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Abstract

The Gradual Learning Algorithm (Boersma 1997) is a constraint ranking algorithm for
learning Optimality-theoretic grammars. The purpose of this article is to assess the
capabilities of the Gradual Learning Algorithm, particularly in comparison with the
Constraint Demotion algorithm of Tesar and Smolensky (1993, 1996, 1998, 2000), which
initiated the learnability research program for Optimality Theory. We argue that the
Gradual Learning Algorithm has a number of special advantages: it can learn free
variation, deal effectively with noisy learning data, and account for gradient well-
formedness judgments. The case studies we examine involve llokano reduplication and
metathesis, Finnish genitive plurals, and the distribution of English light andldark
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1 Introduction

Optimality Theory (Prince and Sstensky 1993) has made possible a new and fruitful approach

to the problem of phonological learning. If the language learner has access to an appropriate
inventory of constraints, then a complete grammar can be derived, provided there is an algorithm
available that can rank the constraints on the basis of the input data. This possibility has led to a
line of research on ranking algorithms, originating with the work of Tesar and Smolensky (1993,
1996, 1998, 2000; Tesar 1995) who propose an algorithm called Constraint Demotion, reviewed
below. Other work on ranking algorithms includes Pulleyblank and Turkel (1995, 1996, 1998, to
appear), Broihier (1995), Hayes (1999), and Prince and Tesar (1999).

Our focus here is the Gradual Learning Algorithm, as developed by Boersma (1997, 1998, to
appear). This algorithm is in some respects a development of Tesar and Smolensky’s proposal: it
directly perturbs constraint rankings in response to language data, and, like most previously
proposed algorithms, it is error-driven, in that it alters rankings only when the input data conflict
with its current ranking hypothesis. What is different about the Gradual Learning Algorithm is
the type of Optimality-Theoretic grammar it presupposes: rather than a set of discrete rankings,
it assumes a continuous scale of constraint strictness. Also, the grammar is regarded as
stochastic: at every evaluation of the candidate set, a small noise component is temporarily
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added to the ranking value of each constraint, so that the grammar can produce variable outputs
if some constraint rankings are close to each other.

The continuous ranking scale implies a different response to input data: rather than a
wholesale reranking, the Gradual Learning Algorithm executes only small perturliatitires
constraints’ locations along the scale. We argue that this more conservative approach yields
important advantages in three areas. First, the Gradual Learning Algorithm can fluently handle
optionality; it readily forms grammars that can generate multiple outputs. Second, the algorithm
is robust in the sense that speech errors occurring in the input data do not lead it off course.
Third, the algorithm is capable of developing formal analyses of linguistic phenomena in which
speakers’ judgments involnetermediate well-formedness

A paradoxical aspect of the Gradual Learning Algorithm is that, even though it is statistical
and gradient in character, most of the constraint rankings it learns are (for all practical purposes)
categorical. These categorical rankings emerge as the limit of gradual learning. Categorical
rankings are of course crucial for learning data patterns where there is no optionality.

Learning algorithms can be assessed on both theoretical and empirical grounds. At the
purely theoretical level, we want to know if an algorithm can be guaranteed to learn all grammars
that possess the formal properties it presupposes. Research results on this question as it concerns
the Gradual Learning Algorithm are reported in Boersma (1997, 1998, to appear). On the
empirical side, we need to show that natural languages are indeed appropriately analyzed with
grammars of the formal type the algorithm can learn.

This paper focuses on the second of these two tasks. We confront the Gradual Learning
Algorithm with a variety of representative phonological phenomena, in order to assess its
capabilities in various ways. This approach reflects our belief that learning algorithms can be
tested just like other proposals in linguistic theory, by checking them out against language data.

A number of our data examples are taken from the work of the second author, who arrived
independently at the notion of a continuous ranking scale, and has with colleagues developed a
number of hand-crafted grammars that work on this basis (Hayes and MacEachern 1998; Hayes,
to appear).

We will begin by reviewing how the Gradual Learning Algorithm works, then present several
empirical applications. A study of llokano phonology shows how the algorithm can cope with
data involving systematic optionality. We also use a restricted subset of the llokano data to
simulate the response of the algorithm to speech errors. In both cases, we make comparisons
with the behavior of the Constraint Demotion Algorithm. We next turn to the study of output
frequencies, posed as an additional, stringent empirical test of the Gradual Learning Algorithm.
We use the algorithm to replicate the study of Anttila (1997a,b) on Finnish genitive plurals.
Lastly we turn to gradient well-formedness, showing that the algorithm can replicate the results
on English/1/ derived with a hand-crafted grammar by Hayes (to appear).

2 How the Gradual Learning Algorithm Works

Two concepts crucial to the Gradual Learning Algorithm arectimginuous ranking scaland
stochastic candidate evaluatiolWWe cover these first, then turn to the internal workings of the
algorithm.
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2.1  The Continuous Ranking Scale

The algorithm presupposes a linear scale of constraint strictness, in which higher values
correspond to higher-ranked constraints. The scale is arranged in arbitrary units, and in principle
has no upper or lower bound. Other work that has suggested or adopted a continuous scale
includes Liberman (1993:21, cited in Reynolds 1994), Zubritskaya (1997:142-4), Hayes and
MacEachern (1998), and Hayes (to appear).

Continuous scales include strict constraint ranking as a special case. For instance, the scale
depicted graphically in (1) illustrates the straightforward nonvariable ranking-CC, >> C;.

(1) Categorical ranking along a continuous scale
Cy Cy Cs

. . . . .

stri‘ct I'ax
(high ranked) (low ranked)

2.2 How Stochastic Evaluation Generates Variation

The continuous scale becomes more meaningful when differences in distance have observable
consequences, e.g. if the short distance betweem@ G in (1) tells us that the relative ranking
of this constraint pair is less fixed than that gf&hd G. We suggest that in the process of
speaking (i.e. advaluation timewhen the candidates in a tableau have to be evaluated in order
to determine a winner), the position of each constraint is temporarily perturbed by a random
positive or negative value. In this way, the constraints act as if they are associated with ranges of
values, instead of single points. We will call the value used at evaluation setection point
The value more permanently associated with the constraint, i.e. the center of the range, will be
called theranking value

Here there are two main possibilities. If the ranges covered by the selection points do not
overlap, the ranking scale again merely recapitulates ordinary categorical ranking:

(2) Categorical ranking with ranges
C G2

< >
-« >

strict lax

But if the ranges overlap, there will be free (variable) ranking:

(3) Free ranking

-« >
3

strict lax

The reason is that, at evaluation time, it is possible to choose the selection points from anywhere
within the ranges of the two constraints. In (3), this would most often resujtant@nking G,
but if the selection points are taken from the upper parg'sfr@nge, and the lower part 0p'§,
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then G would outrank G. The two possibilities are shown beloys,/ and/e3/ depict the
selection points for £and G.

(4) a. Common resultC, >> C3

2 G Cs °3
( ) )
strict lax
b. Rareresult C3 > C,
C, 2 Cs
( ) )
strict lax

When one sorts all the constraints in the grammar by their selection points, one obtains a total
ranking to be employed for a particular evaluation time. With this total ranking, the ordinary
competition of candidates (supplied by the GEN function of Optimality Theory) takes place and
determines the winning output candidate.

The above description covers how the system in (4) behaves at one single evaluation time.
Over a longer sequence of evaluations, the overlapping ranges will often yield an important
observable effect: for forms in whichh &> Cj3 yields a different output thansCG> C,, one
will observefree variation i.e. multiple outputs for a single underlying form.

To implement these ideas more precisely, we interpret the constraint ramedasility
distributions (Boersma 1997, 1998; Hayes and MacEachern 19%&)r each constraint, we
assume a function that specifies the probability that the selection point will occur at any given
distance above or below the constraint’s ranking value at evaluation time. By using probability
distributions, one can not only enumerate the set of outputs generated by a grammar, but also
make predictions about their relative frequencies, a matter that will turn out to be important
below.

Many noisy events in the real world occur with probabilities that are appropriately described
with anormal (= Gaussian) distribution. A normal distribution has a single peak in the center,
which means that values around the center are most probable, and declines gently but swiftly
toward zero on each side. Values become less probable the farther they are away from the
center, without ever actually becoming zero:

(5) The normal distribution
o o

T

ptoc  u p-o

1 The mechanism for determining the winning output in Optimality Theory, with GEN and a ranked constraint
set, will not be reviewed here. For background, see Prince and Smolensky’s original work (1993), or textbooks such
as Archangeli and Langendoen (1997) and Kager (1999b).
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A normal distribution is described by its meanwhich occurs at its center, and its standard
deviationg, which describes the “breadth” of the curve. Approximately 68 percent of the values
drawn from a normal distribution lie within one standard deviation from the mean, i.e. between
u-o andp+o. The Gradual Learning Algorithm makes the assumption that selection points for
natural language constraints are distributed normally, with the mean of the distribution occurring
at the ranking value. The normal distributions are assumed to hasantiestandard deviation
for every constraint, for which we typically adopt the arbitrary value of22 0. this approach,
the behavior of a constraint set depends on its ranking values alone; constraints cannot be
individually assigned standard deviations. The process of learning an appropriate constraint
ranking therefore consists solely of finding a workable set of ranking values.

When discussing the derivation of forms using a set of constraints, we will use the term
evaluation noisdéo designate the standard deviation of the distribut@ntbe term is intended
to suggest that this value resides in the evaluation process itself, not in the constraints.

We illustrate these concepts with two hypothetical constraints and their associated normal
distributions on an arbitrary scale:

(6) Overlapping ranking distributions
Cy Co

T T T T T T

stricc 90 88 86 84 82 80  lax

In (6), the ranking values for,Gand G are at the hypothetical values 87.7 and 83.1. Since the
evaluation noise is 2.0, the normal distributions assigned; tand G overlap substantially.

While the selection points for,Gnd G will most often occur somewhere in the central “hump”

of their distributions, they will on occasion be found quite a bit further away. ThusjliC
outrank G at evaluation time in most cases, but the opposite ranking will occasionally hold.
Simple calculations show that the percentages for these outcomes will tend towards the values
94.8% (G >> C,) and 5.2% (G >> Cy).

2.3 How can therenot be variation?

A worry that may have presented itself to the reader at this point is: how can this scheme depict
obligatory constraint ranking, if the values of the normal distribution never actually reach zero?
The answer is that when two constraints have distributions that are dramatically far apart, the
odds of a deviant ranking become vanishingly low. Thus, if two distributions are 5 standard
deviations apart, the odds that a “reversed” ranking could emerge are about 1 in 5,000. This
frequency would be hard to distinguish empirically, we think, from the background noise of
speech errors. If the distributions are 9 standard deviations apart, the chances of a “reversed”
ranking are 1 in 10 billion, implying that one would not expect to observe a form derived by this
ranking even if one monitored a speaker for an entire lifetime.

2 Since the units of the ranking scale are themselves arbitrary, it does not matter what standard deviation is
used, so long as it is the same for all constraints.
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In applying the Gradual Learning Algorithm, we often find that it places constraints at
distances of tens or even hundreds of standard deviations apart, giving what is to all intents and
purposes nonvariable ranking.

Often, constraints occur ranked in long transitive chains. The ranking scheme depicted here
can treat such cases, since the strictness continuum is assumed to have no upper or lower bounds,
and the learning algorithm is allowed to take up as much space as it needs to represent all the
necessary rankings.

2.4  Predictions about Ranking

This concludes our discussion of the model of ranking presupposed by the Gradual Learning
Algorithm. Before we move on, it is worth noting that this model is quite restrictive: there are
various cases of logically possible free rankings that it excludes. Thus, for example, it would be
impossible to have a scheme in which A “strictly” outranks B (i.e., the opposite ranking is
vanishingly rare), B “strictly” outranks C, and D is ranked freely with respect to both A and C.
This scheme would require a much larger standard deviation for D than for the other constraints.
The model does not permit this, since the noise is regarded as a property of evaluation, not of
each separate constraint:

(7) Aless restrictive grammar model with different distributions for each constraint

A B D C

A At

strict lax

Thus, while the empirical tests given below are meant primarily to assess the Gradual Learning
Algorithm, they also test a general hypothesis about possible free radkings.

2.5 The Gradual Learning Algorithm

The Gradual Learning Algorithm tries to locate an empirically appropriate ranking value for
every constraint.

The Initial State. The constraints begin with ranking values according to the initial state
that is hypothesized by the linguist. In principle, this could give every constraint the same
ranking value at the start, or one could incorporate various proposals from the literature for less
trivial initial rankings (for example, Faithfulness low: Gnanadesikan 1995, Smolensky 1996,
Boersma 1998, Hayes 1999; or Faithfulness high: Hale and Reiss 1998). In the cases considered
here, such decisions affect the amount of input data and computation needed, but do not
materially affect the final outconfe.ln our implementations of the algorithm, every constraint
starts at the same value, selected arbitrarily to be 100.

3 Reynolds (1994) and Nagy and Reynolds (1997) adopt a “floating constraint” model, in which a given
constraint may be freely ranked against a whole hierarchy of categorically ranked constraints, which is exactly what
we just claimed to be impossible. We have undertaken reanalyses of a number of Reynolds’s and Nagy’'s cases, and
found that it is possible to account for their data within the model we assume, though never with the same constraint
inventory. Some reanalyses are posted at http://www.fon.hum.uva.nl/paul/gla/.

4 In contrast, for the problem of learning phonotactic distributions from positive evidence only (Smolensky
1996, Hayes 1999, Prince and Tesar 1999), for which no fully adequate algorithm yet exists, the issue of initial
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Step 1: A datum The algorithm is presented with a learning datum, i.e. an adult surface
form that the language learner hears in her environment and assumes to be correct. Adopting
Tesar and Smolensky’s idealization, we assume that the algorithm is also able to access the
underlying form for each learning datum.

The idea that the learner obtains access to underlying forms naturally raises questions, since
underlying forms are not audible, nor are structures like syllables or feet. We refer the reader to
Tesar and Smolensky (1996, 2000) for discussion of how the problem of covert structure might
be overcome by embedding the ranking algorithm within a larger learning system.

Step 2: Generation Since the algorithm is error-driven, the next step is to see what the
current grammar generates for the assumed underlying form. Where this yields a mismatch,
adjustment of the grammar can then take place.

Generation works as follows. For each constraint, a noise value is taken at random from the
normal probability distribution and is added to the constraint’s current ranking value to obtain
the selection point. Once a selection point has been picked for every constraint, generation
proceeds byorting the constraints in descending order of their selection points. This yields a
strict constraint ranking, of the traditional kind, which is used only for this particular evaluation.
The remainder of the generation process follows the standard mechanisms of Optimality
Theory?®

Step 3: Comparison If the form just generated by the grammar is identical to the learning
datum, nothing further is done. But if there is a mismatch, the algorithm notices this and takes
action. Specifically, it compares the constraint violations of the learning datum with what is
currently generated by the grammar. This comparison is illustrated in tableau (8), which depicts
a representative grammar with eight schematic constraints.

(8) A mismatch between the learner’s form and the adult form

/underlying forni lc|c|c|c|c|c|c|c
Vv Candidate 1 (learning datunﬂ) *Lo[ kx| o * *
*[]* Candidate 2 (learner’s outpu# * * * * *

As can be seen, Candidate 1, which is the surface form the algorithm has just “heard,” failed to
emerge as the winner in the overall competition among candidates. That winner happens to be
Candidate 2. The algorithm, being error-driven, takes this mismatch as a signal to alter the
grammar so that in the future the grammar will be more likely to generate Candidate 1, and not
Candidate 2. The alteration will take the form of changes in the ranking values of the schematic
constraints ¢-Cg.5

rankings may well be crucial. The cases we consider here are more tractable, since the goal is simply to project
surface forms from known underlying forms.

S |t follows that the set of possible outputs that can be generated by a constraint set remain the same under our
approach. As noted in §2.4, the theory makes additional predictions about what outputs can occur together in free
variation.

6 Note that in cases of free variation, Candidate 2 might actually be well formed. This case is dis@&s$ed in
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The next step is just the same as in the Constraint Demotion Algorithm (Tesar and
Smolensky 1998:239):mark cancellation. Violations that match in the two rival candidates are
ignored, as they make no difference to the outcome.

(9) Mark cancellation

/underlying forni lc|c|c|c|c|c|c|c
Vv Candidate 1 (learning datun‘") x| x| A * ki
*[]* Candidate 2 (learner's outpullb 1 ¥ * * */

Step 4: Adjustment. In the situation being considered, Candidate 1 (the candidate
embodied by the learning datum) should have won, but Candidate 2 was the actual winner. This
constitutes evidence for two things. First, it is likely that those constraints for which the
learning-datum candidate suffers uncanceled marks are ranked too high. Second, it is likely that
those constraints for which the learner’s output suffers uncanceled marks are ranked too low.
Neither of these conclusions can be taken as a certainty. However, this uncertainty is not crucial,
since the ultimate shape of the grammar will be determined by the ranking values that the
constraints will take on in the long term, with exposure to a full range of representative forms.
The hypothesis behind the Gradual Learning Algorithm is that moderate adjustments of ranking
values will ultimately achieve the right grammar. Therefore, the algorithm is set up so as to
make a small adjustment to all constraints that involve uncanceled marks.

We defineplasticityas the numerical quantity by which the algorithm adjusts the constraints’
ranking values at any given time. Appropriate values for plasticity are discussed below; for now,
the reader should simply assume that the plasticity is reasonably small.

The response of the Gradual Learning Algorithm to data, as processed in the way just given,
is as follows:

» For any constraint for which the learning-datum candidate suffers uncanceled marks,
decreasehat constraint’s ranking value by an amount equal to the current plasticity.

* For any constraint for which the learner’'s own output candidate suffers uncanceled
marks, increasethat constraint’s ranking value by an amount equal to the current
plasticity.

For the schematic case under discussion, these adjustments are shown in tableau (10) as small
arrows. Canceled marks are omitted for clarity.

(10) The learning step: adjusting the ranking values

/underlying formi lc|c|clc|c|c|c|c
Vv Candidate 1 (learning datun'") * o | * *
*[]* Candidate 2 (learner’s outpulﬂ % %

The adjustments ensure that Candidate 1 beceoraswhat more likelp be generated on any
future occasion, and Candidate 2 somewhat less likely.

Final state. With further exposure to learning data, the algorithm cycles repeatedly through
steps 1 to 4. If for the underlying form under discussion, the adult output is always Candidate 1,
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then G or G (or both; it depends on the violations of all the other learning pairs) will eventually
be ranked at a safe distance aboye C,, and G. This distance will be enough that the
probability of generating Candidate 2 will become essentially nil, and the resulting grammar will
generate Candidate 1 essentially 100% of the time.

2.6  The Algorithm’s Response to Free Variation

Consider now cases of free variation, where the same underlying form yields more than one
possible output. In such cases, it can happen that the current guess of the grammar fails to match
the learning datum, yet is well-formed in the target language.

The activity of the Gradual Learning Algorithm in such cases might at first glance seem
pointless: as free variants are processed, they induce apparently random small fluctuations in the
ranking values of the constraintsCloser inspection, however, shows that the response of the
algorithm is in the long run systematic and useful: with sufficient data, the algorithm will
produce a grammar thatimics the relative frequency of free variaint$he learning set. As will
be seen in 85 below, the frequency-matching behavior of the Gradual Learning Algorithm has
important linguistic consequences.

Intuitively, frequency matching works as follows: a given free varkanhat is more
common than a cooccurring varidftwill have more “say” tharf' in determining the ranking
values. However, adjustments inducedrowill only occur up to the point where the grammar
assigns td- its fair share of the set of forms derivable from the underlying form in question.
Should learning accidentally move the ranking values beyond this point, then tok€nsilbf
get a stronger effect in subsequent learning, resulting in adjustments in the opposite direction.
The system eventually stabilizes with ranking values that yield a distribution of generated
outputs that mimics the distribution of forms in the learning data. The same mechanism will
mimic learning-set frequencies for three, or in principle any number, of free variants.

This concludes the main discussion of the algorithm. In implementing the algorithm, one
must select a learning schedule for plasticity and other parameters, ideally in a way that
maximizes the speed and accuracy of learning. For now we suppress these details, deferring
discussion to Appendix A.

2.7 Some Alternatives that Don’'t Work

We would not want the view attributed to us that use of statistical methods is a panacea in
learnability; plainly, it is not. First, the Gradual Learning Algorithm relies on the theory of
grammar to which it is coupled (Optimality Theory), along with a specific constraint inventory.

If that inventory does not permit the linguistically significant generalizations to be captured, then
the grammar learned by the Gradual Learning Algorithm will not capture th&acond, not

just any statistically-driven ranking algorithm suffices. We have tried quite a few alternatives
and found that they failed on data for which the Gradual Learning Algorithm succeeded. These
alternatives include:

7 We have checked this claim by creating pathological versions of our learning files in which the constraint
violations are replaced with random values. We find that even with lengthy exposure, the Gradual Learning
Algorithm cannot learn the data pattern when the constraints are rendered into nonsense in this way.
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* Decrementing only those constraints that directly cause a wrong guess to win (for
example, just €and G in tableau (10) above).

» Decrementing only the highest uncancelled constraint of the learning datum;(junst C
tableau (10)). This approach is called the “Minimal Gradual Learning Algorithm” in
Boersma (1997).

* Decrementing only the highest uncancelled constraint of the learning datum, and
promoting only the highest uncancelled mark of the incorrect winner. This is a
symmetrized version of the previous algorithm, and was shown to be incorrect in
Boersma (1997).

All these learning schemes work correctly for nonvariable data, but crash to various degrees for
data involving optionality.

2.8 Assessing a Learned Grammar

After the algorithm has learned a grammar, we must assess the validity of that grammar,
particularly in cases where the input data exhibit free variation. This can be done
straightforwardly simply by repeating the process of stochastic evaluation many times, without
further learning. It is quite feasible to run thousands of trials, and thus obtain accurate estimates
both of what forms the grammar generates, and of the frequencies with which the forms are
generated.

We turn now to empirical applications of the Gradual Learning Algorithm.

3 Free Variation in llokano

Hayes and Abad (1989) present and analyze a variety of phonological phenomena of llokano, an
Austronesian language of the Northern Philippines. The llokano data exhibit phonological free
variation on a fairly extensive scale. The following will be nothing more than an extract from
the language, but we believe it to be representative and faithful enough for the results to be
meaningful.

3.1  The llokano Data

Our interest lies in two areas of free variation: an optional process of metathesis, and variation in
the form of reduplicants.

3.1.1 Metathesis

llokano metathesis permutes precisely one segmental sequ@mgeoptionally becomepw?].
In all cases, théw] is itself not an underlying segment, but is derived fforh Thus, there are
forms like those in (11):
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(11) da?o ‘kind of tree’ /pag-da?o-an/ —  pagda?wan, ‘place where
pagdaw?an da?o’s are planted’

ba?o ‘rat’ /pag-ba?o-an/ -  pagba?wan, ‘place where
pagbaw?an rats live’

tato ‘person’ /ta?o-en/ -  ta?wen, ‘to repopulate’
taw?en

?agga?o ‘to dish up rice’ /pag-ga?o-an/ —»  pagga?wan, ‘place where
paggaw?an rice is served’

?agsa?o ‘to speak’ /pag-sa?o-en/ —  pagsa?wen, ‘to cause to speak’
pagsaw?en

The motivation for metathesis is not hard to find: glottal stop is not generally permitted in
llokano syllable codas. For example, there are no stemspikdak; and special reduplication
patterns arise where needed to avoid ¢@fiéHayes and Abad 1989:358). Indeed, the only coda
glottal stops of llokano are those which arise when glide formation strands a glottal stop, as in
the optional variants just giveén.

The glide formation that is seen in metathetic forms is general in the language, taking place
whenever a vowel-initial suffix is added to a stem ending in a nonlow vowel; thus for example
?ajo ‘to cheer up’ ~?ajwen ‘cheer upeOAL FOCUS. See Hayes and Abad (1989:337-8) and
Hayes (1989:271) for additional examples.

3.1.2 Reduplication

llokano reduplication comes in two varieties; one in which the reduplicative prefix forms a heavy
syllable, and one in which it forms a light syllable. The two reduplication processes are not
generally in free variation; rather, each is recruited in the formation of a variety of morphological
categories.

The main interest here is a pattern found for heavy reduplication when the stem begins with a
consonant + glide cluster. Here, it is an option to form the reduplicated syllable by vocalizing
the glide. This vowel is lengthened in order to provide weight.

(12) rwa.nan ‘door’ ru.rwa.nan ‘doors’
pja.no ‘piano’ pii.pja.no ‘pianos’
bwa.ja ‘crocodile’ na.ka.bur.bwa.ja ‘act like a crocodile’

A second option is to copy the entire C+glide+VC sequence, as in (13):

8 There are sounds in coda position that Hayes and Abad (1989:340) transf?ib¢hese are casual-speech
lenited forms oft/. Native speakers tend to hear thesa/aarid sometimes they sound rather intermediate between
[t] and[?]. In light of phonetic research on the non-neutralizing character of many phonetic processes (see e.g.
Dinnsen 1985), it seems unlikely that these are true glottal stops; rather, they probably contain residual tongue-blade
gestures, much as was documented for English by Barry (1985) and Nolan (1992). Thus a constraint banning glottal
stops in coda, if restricted to “pure” glottal stops, would not apply to them. Should future phonetic work prove that
the glottal stops fromt//really are straightforward glottal stops (an event we regard as unlikely), then this part of
llokano phonology must be considered opaque, in the sense of Kiparsky 1973, and the analysis would have to be
recast making use of one of the various theoretical devices proposed for treating opacity in Optimality Theory
(McCarthy 1996, 1999; Kirchner 1996; Kiparsky 1998).
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(13) rwar.rwa.nan ‘doors’
pjan.pja.no ‘pianos’
na.ka.bwaj.bwa.ja ‘act like a crocodile’

Lastly, there is a possibility of copying the glide as a vowel, as before, but with the heavy
syllable created by resyllabifying the first consonant of the stem leftward. The vocalized glide
surfaces as short:

(14) rur.wa.nan ‘doors’
pip.ja.no ‘pianos’
na.ka.bub.wa.ja ‘act like a crocodile’

The evidence that resyllabification has actually taken place is found in stems that begin with
/tw/: here, just in case the vowel of the reduplicant is short/ithappears in its voiceless
allophone; thus in detailed transcriptiomy.wa.gan.is [rur.wa.gan]. [r] iS the surface form of

/r/ that is generally found in coda position (Hayes and Abad 1989:355).

Variation in llokano reduplicants appears to be fairly systematic, though there are individual
forms where a particular variant is lexicalized and used more or less obligatorily. We model here
the cases of productive formation.

In the following sections, we sketch analyses for llokano metathesis and reduplication. For
both, we adhere to the general scheme for Correspondence constraints given in McCarthy and
Prince (1995), as well as McCarthy and Prince’s account of the mechanisms of reduplication.

3.2  Analysis of Metathesis

The basic analysis of metathesis seems fairly straightforward: it reflects a dynamic competition
between a constraint that bans glottal stop in coda positig) (¥ith a constraint that requires
faithfulness to underlying linear orderI{lEARITY). A form like taw.?en avoids codd?],
whereas a form likea?.wen preserves the order gf?/ and/o/ (- [w]), as seen in the
underlying form/ta?o-en/. Both candidates alter the syllabicity 4f/, thus violating a
constraint bENT-IO(syllabic). The basic idea is summarized in the following tableaux, which
derive the two alternative outcomes:

(15) a. Glide formation

/ta?0-en/ LINEARITY *?Ng IDENT-IO(syllabic)
[] ta?.wen * *
taw.?en *| *

b. Glide formation and metathesis

/ta?0-en/ *Ns LINEARITY IDENT-IO(syllabic)

ta?.wen *1 *

[] taw.?en * *
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One must also show why underlyinta?o-en/ should require itgo/ to appear asv] in any
event. The fully faithful outcome,ti.?o.en, is ruled out by @SET (Prince and Smolensky
1993:25), which militates against vowel-initial syllables and is undominated in llokano. Vowel
deletion, as inta?en or *ta?on, is ruled out by undominatedA¥-10(V).

Resolution of hiatus by epenthefi (*ta?o?en) is excluded for stems ending fn/. This
fact indicates a fairly high ranking foreB-1O(?), which forbids glottal epenthesis. However,
DEP-10(?) is not undominated, because glottal epenthesi®e normal outcome fgn/ stems, as
in /basa-en/ — basa?en ‘read-GOAL FOCUS. In such stems, glide formation is not a
possibility, because of (a) an undominated ban on low glidesWAELIDE, thus *bas.aen);

(b) the undominated faithfulness constramENT-IO(low), which requires low segments to
remain so (basa-en/ - *baswen).

Another hypothetical way to avo[d] in coda position would be to resyllabify it, forming a
[?w] onset (ta.?wen). This cannot happen, because llokano never peR@itsnsets in any
context. For present purposes we will simply positdC[constraint; noting that other complex
onsets (such as stop + liquid or oral consonant + glide) are possible.

The full tableaux in (16) give these additional possibilities, along with the constraints that
rule them out.

(16) a. Glide formation with optional metathesis

/ta?o-en/ *L oW |IDENT-IO [*[ ;2C|MAX-IO| ONSET | DEP-IO | LINEA- |*?]5|IDENT-IO
GLIDE| (low) V) (? RITY (syllabic)
[] ta?.wen * *
[] taw.?en * *
ta.?0.?en * |
ta.?0.en x|
ta?en, ta?on * |
ta.?wen * | *

b. Glottal stop insertion

/basa-en/  [|*LOW |IDENT-IO|*[ ;2C|MAX-IO| ONSET [ DEP-IO | LINEA- |*?],|IDENT-IO
GLIDE| (low) V) (?) RITY (syllabic)
[] ba.sa.?en *
ba.sa.en * |
ba.sen, ba.san * |
bas.wen * | *
bas.aen * | *

Note that metathesis is never of any help in the absence of glide formation. A metathesized
but unglided[o], as inta.o.?en, will incur a violation of USET in its new location. Since
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ta.o.?en is additionally burdened with alNlEARITY violation, it can never win out over simpler
candidates that avoid metathesis in the first place.

One further constraint is needed to account for the fac{tha&tan occur in codas in forms
derived by glide formation, but never in underived forms. We find that it is not possible to
derive this pattern with a simple ranking of markedness and faithfulness constraints. But the
variety of constraints sometimes called “output-to-output correspondence” (Benua 1995, 1997;
Burzio 1996; Kager 1999a, 1999b; Kenstowicz 1997; Steriade 2000), which forces uniformity of
phonological properties through the paradigm, suffices. The idea is that the ban on glottal stop in
coda is outranked by Ak -OO(?), but outranks Mx-10(?). What this means is that[lf] occurs
on the surface of some morphological base fdrencorresponding?] must also occur in forms
that are morphologically related to that base. Thus|?hef the surface fornta?o serves to
protect the correspondirf@] of ta?.wen. In contrast, in a hypothetical underived form like
pa?.lak, [?] cannot be protected by Ak-OO(?). Therefore, if there were an underlying
representatiopa?lak/ that included a basic codd], a[?]-less form created by GEN would
win in the competitiod? The analysis is summarized in the following tableaux:

(17) a. Paradigm uniformity forces glottal stop in coda

/ta?0-en/ MAX-O0(?) *No MAX-10(?)
paradigm includeta?o

D ta?.wen *

ta.wen * | *

b. Glottal stop deleted from coda

/patlak/ MAX-OO0(?) *No MAX-10(?)

pa?.lak x|

[] palak *

3.3  Analysis of Variable Reduplication

We posit that reduplicated forms lilbm:.bwa.ja can win out ovebwaj.bwa.ja some of the
time, because the reduplicami: is a simpler syllable thaswaj. More preciselybu:.bwa.ja
conforms better (one violation instead of two) to the constraiotm@L EXONSET. Although this
constraint does not hold true in general of llokano vocabulary, it can be ranked high enough to
make bu:.bwa.ja an optiont! The possibility ofbui.bwa.ja is thus an instance of the
“Emergence of the Unmarked” effect (McCarthy and Prince 1994).

In return,bwaj.bwa.ja can defeabu:.bwa.ja some of the time, because it incurs fewer
violations of constraints requiring that the reduplicant be a good copy of the base. In particular,

9 In llokano it suffices to assume that the morphological base is the bare stem, which is always a legal isolation
form.

10 1n most versions of Optimality Theory, illegal forms are ruled out by the constraint system, rather than by
limitations on underlying representations (Prince and Smolensky 1993; Smolensky 1996).

11 [bu:.bwa.ja] also avoids a *ODA violation, but *GODA turns out to reside so low in the constraint
hierarchy that it cannot be the responsible factor.
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it retains the length of the copied vowel, thus obeying the base-reduplicant identity constraint
IDENT-BR(long)12 Moreover, it retains the syllabicity of the glider/, respecting DENT-
BR(syllabic), and it copies more segments of the base, incurring fewer violations<eBR.

The remaining varianbub.wa.ja avoids *QMPLEXONSET violations completely, and can
therefore on some occasions beat out its two rivals. It loses, sometimes, because unlike its rivals
it fails to display the cross-linguistically favored alignment of syllable and stem boundaries. In
terms of the theory of McCarthy and Prince (1993)b.wa.ja violates AIGN(Stem, L,
Syllable, L), whereabwaj.bwa.ja andbu:.bwa.ja obey this constraint.

Assuming suitable rankings elsewhere, the three-way optionality reduces to variable ranking
of just three constraints, as shown in the following tableaux. In the underlying forms, “HRED”
stands for the abstract morpheme that is phonologically realized with heavy reduplication.

(18) Triple variation in heavy reduplication

a.

/HRED-bwaja/ ALIGN | IDENT-BR(long) | *COMPLEXONSET

**

[] bwaj.bwa.ja

bu:.bwa.ja *1 *

bub.wa.ja *

/HRED-bwaja/ ALIGN *COMPLEXONSET | IDENT-BR(long)

[] buibwa.ja * *

bwaj.bwa.ja **|

*|

bub.wa.ja

/HRED-bwaja/ | *COMPLEXONSET | IDENT-BR(long) ALIGN

[] bub.wa.ja *

bu:.bwa.ja *|

bwaj.bwa.ja I

Here are a few additional details of the analysis.

» For brevity, we omit the (undominated) constraints that force the reduplicant to be a
heavy syllable.

12 The feature [long] stands here for whatever formal account of length, such as multiple linking, turns out to
be appropriate.



PAUL BOERSMA AND BRUCE HAYES 16

* A further candidateBai.bwa.ja manages to avoid a complex onset, justlikebwa.ja,
and moreover avoids miscopying syllabicity (i.e. copyimg as[u]). This candidate is
completely ill-formed, however; a fact we attribute to its violatim@NCIGUITY, the
constraint that requires that a contiguous sequence be copied (McCarthy and Prince 1995,
371).

* Both *[4?C and *GMPLEXONSET are necessary in llokano?(] onsets are completely
impossible, whereas the more general class of complex onsets (includifigwe.aor
[tr]) are well attested. The role of ®&®PLEXONSET lies only in the derivation of correct
intervocalic syllabification (e.dkwat.ro ‘four’) and in producing reduplicated forms like
bu:.bwa.ja.

3.4  Constraint Ranking

To provide a check on what the Gradual Learning Algorithm does with the llokano data, we
carried out a hand ranking of the 18 constraints discussed above. The ranking proceeded on the
basis of the following representative forms, with the illegal rival candidates shown on the right:

(19) Legal and illegal forms in llokano

a. /ta?o-en/: taw.?en, ta?.wen *ta.wen, *ta.?en, *ta.?o0.en,
*ta.?0.?en, *ta.?wen

b. /HRED-bwa.ja/: bwaj.bwa.ja, *bwai.bwa.ja, *bai.bwa.ja

bu:.bwa.ja, bub.wa.ja

C. /patlak/: pa.lak *pat.lak, *pa.?lak

d. /lab?aj/: lab.?aj *la.baj

e. /trabaho/: tra.ba.ho *tar.ba.ho

f. /?ajo-en/: ?aj.wen *?a.jen, *?a.jo.en, *?a.jo.?en,
*a.jwen

g. /basa-en/: ba.sa.?en *ba.sen, *ba.sa.en, *bas.aen,
*bas.wen

A few forms not yet presented need some annotation here. The fdabtRaj ‘bland’ is well-
formed shows that WX-10(?) is active in the grammar; elsta®aj would be derived?3 lllegal
*tar.ba.ho from /trabaho/ ‘work’ shows that metathesis is not called for merely to avoid a
*COMPLEXONSET violation. /?ajo-en/ and/basa-en/, given earlier, illustrate straightforward
hiatus resolution where no metathesis configuration arises.

The hand ranking of the constraints was done as follows. We first computed the factorial
typology of the constraint set over the candidates given. Then, we gradually added pairwise
constraint rankings, recomputing the factorial typology as constraipedri by these rankings,
until the output set had shrunk to include only the attested cases of free variation. The ranking
that emerged is as follows:

13 Actually, postconsonantal//is optionally deleted in certain forms, but the deletion happens on a sporadic,
stem-by-stem basis. We idealize, harmlessly we think, to general non-deletion.
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(20) Hand ranking for llokano

ONSET IDENT-IO(low) *LOWGLIDE MAX—IO(V)

\\ / / MAX-00()

DEP-IO(?) *[52C

A WANY.

LINEARITY *?5)

IDENT—IO(syllabic) \ \

ALIGN(Stem,Lg,L) IDENT-BR(long) *COMPLEXONSET MAX—IO(?)

MAX—-BR

*CODA IDENT-BR(syllabic)

It can be seen that some of the constraints are undominated, and sit at the top of the grammar.
Somewhere in the “middle” of the grammar are two sets of constraints that must be freely
ranked, in order to derive free variation. These are shown boxed in different shades of gray.
Neither of these freely ranked sets is at the bottom of the grammar, as each includes constraints
that dominate still others further down. We will show below (83.7) that the task of learning
freely ranked sets in “medial position” is of particular interest in comparing different ranking
algorithms.

3.5 Application of the Gradual Learning Algorithm

We started with all constraints at a ranking value (selected arbitrarily) of 100. The algorithm was
provided with 21,000 underlyirigurface pairs. The underlying form for each pair was chosen
randomly from the seven forms in (19) with equal probability, so that each underlying form
occurred approximately 3,000 times in the data. Where a given underlying form corresponded to
more than one legal surface form, we assigned each surface form an equal probability (i.e. 50%
each fortaw.?en andta?.wen, and 33.3% each fdm:.bwa.ja, bwaj.bwa.ja, andbub.wa.ja).

It should be noted that each of the forms of (19) is representative of a substantial lexical
class, whose members share the same crucial constraint violations. Since it is these violations
that drive learning, it suffices to use multiple copies of the forms of (19) to stand in for the full
llokano lexicon.

The schedules that we employed for plasticity and other crucial values are given in Appendix
A.

After 21,000 data, the Gradual Learning Algorithm had assigned the following ranking
values to the constraints:
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(21) Machine ranking for llokano

Constraint Ranking Constraint Ranking
Value Value
ONSET 164.00 ONTIGUITY 108.00
*L OWGLIDE 164.00 ALIGN(Stem, L, Syll, L) 87.96
IDENT-1O(low) 164.00 *COMPLEXONSET 86.64
MAX-10O(V) 162.00 IDENT-BR(long) 85.64
*[ 52C 142.00 MAX-10O(?) 80.00
MAX-00(?) 138.00 MAX-BR 67.60
DEP-10(?) 130.00 DENT-BR(syllabic) 55.60
*No 111.08 *QODA 40.36
LINEARITY 110.92 DENT-IO(syllabic) -56.00

Comparing these with the hand ranking of (20), the reader will see that there is a close
resemblance. Where the hand ranking posits strict domination, the machine ranking places the
constraints at a considerable distance apart (for exampbe;I®(?) >> *CODA, needed so that
lab.?aj will defeat 1a.baj). Where the hand ranking posits free variation, the algorithmic
ranking assigns close or near-identical values (for example, free rankifify; @fiftd LNEARITY,

needed for optional metathesis). In cases where the ranking makes no difference to the empirical
outcome, the machine ranking will harmlessly assign unpredictable values. NG, O(low)

and *[;?C are placed 22 units apart, although the hand ranking showed that both are in fact
undominated.

The truest test of the algorithm, however, is not the form of the resulting grammar, but what
this grammar generates. To determine this, we computed the output probabilities for grammar
(21) by running each of the seven underlying forms through the grammar one million times. The
results are shown in the final column of table (22).
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(22) Accuracy of predictions made by machine-ranked grammar

Underlying form  Surface form Target language  Simulation result

/ta?o-en/ taw.?en 50% 52.2%
ta?.wen 50% 47.9%
ta.wen 0 0
ta.?en 0 0
ta.?0.en 0 0
ta.?0.7en 0 0
ta.?wen 0 0
/HRED-bwaja/ buibwa.ja 33.33% 36.7%
bwaj.bwa.ja 33.33% 31.2%
bub.wa.ja 33.33% 32.1%
bwa:.bwa.ja 0 0
ba:.bwa.ja 0 0
/pa?lak/ pa.lak 100% 100%
pa?.lak 0 0
pa.?lak 0 0
/1ab?aj/ lab.?aj 100% 100%
la.baj 0 0
/trabaho/ tra.ba.ho 100% 100%
tar.ba.ho 0 0
/?ajo-en/ ?aj.wen 100% 100%
?a.jen 0 0
?a.jo.en 0 0
?a.jo.?en 0 0
?a.jwen 0 0
/basa-en/ ba.sa.?en 100% 100%
ba.sen 0 0
ba.sa.en 0 0
bas.aen 0 0
bas.wen 0 0

It can be seen that the grammar generates all and only the correct forms of the language.
Moreover, where there is free variation, the grammar does a reasonably good job of matching the
frequencies found in the learning data.

Values describing the intermediate stages of learning for this simulation are given in
Appendix A.

The grammar described in (21) is the result of just one run of the algorithm. Since the
algorithm encounters the data in random order, and itself includes a stochastic component, other
runs can produce different results. Therefore, a fully legitimate test must carry out learning
many times, checking to see that learning is successful each time. We therefore repeated the
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entire learning process 1000 times, testing the resulting 1000 grammars with 100,000 trials for
each form, and collected statistics on the result.

First, in the entire set of 1000 runs (700 million trials), only 7 illegal forms were generated,
all of them *a.?0.?en. Second, frequency matching was generally good: the mean absolute
error in frequency matching had an average value of 0.46% (standard deviation 0.20%). The run
in (22) had a fairly typical mean absolute error of 0.39%.

We conclude that the algorithm’s attempt to learn the patterns of free variation in llokano
was successful.

3.6  The Ubiquity of Free Variation

Are the llokano data, with such abundant free variation, an empirical aberration? We tend to
think not. For instance, our experience in working with native speaker consultants is that one
virtually always finds more free variation than is given in reference sources. On a less casual
basis, the research literature in sociolinguistics (e.g. Labov 1974, 1994) strongly supports the
view that free variation is quite normal and characteristic of language. Therefore, in passing a
representative test involving free variation, the Gradual Learning Algorithm gives evidence that

it possesses a capacity that is crucial to any learning algorithm that seeks to model human
abilities.

3.7 A Comparison with the Constraint Demotion Algorithm

In this light, we undertake in this section a comparison of the performance of the Gradual
Learning Algorithm with that of Tesar and Smolensky’s Constraint Demotion Algorithm. The
reader should note at the outset that the Constraint Demotion Algorithmotaesigned to

treat free variation Tesar and Smolensky are quite explicit on this point (Tesar 1995:98-101,
Tesar and Smolensky 1996:28-29, 1998:249-51). Taking the Constraint Demotion Algorithm as
a starting point, there could in principle be a number of ways that new algorithms inspired by it,
or incorporating it, could handle variation. Our goal is to show that the Gradual Learning
Algorithm is a workable solution to the research problem that Tesar and Smolensky have posed.

The Constraint Demotion Algorithm comes in a number of versions. For simplicity we focus
first on the “Batch” version (Tesar and Smolensky 1993:15); so called because it processes the
entire data set repeatedly. We fed to a software implementation of this algorithm the same body
of llokano underlying forms, candidates, constraints, and violations that we had given to the
Gradual Learning Algorithm. Free variation cases were treated by making multiple copies of the
relevant underlying forms, assigning each a different output.

The Constraint Demotion Algorithm ranks constraints by forming a hierarchy of strata, such
that any constraint in a higher stratum outranks any constraint in a lower stratum. In the batch
version of the algorithm, the strata are discovered one by one in decreasing order of strictness. In
our simulation, we found that Constraint Demotion began by locating the following three strata:

(23) Strata found by Constraint Demotion

Stratum #1.: @SET, *[47C, MAX-IO(V), MAX-OO(?), *L OWGLIDE,
IDENT-IO(low), CONTIGUITY

Stratum #2: EP-10(?)

Stratum #3: DENT-10(syllabic)



EMPIRICAL TESTS OF THE GRADUAL LEARNING ALGORITHM 21

These strata are in agreement with what we found in our hand ranking (20).

The Constraint Demotion algorithm then attempted to select constraints from among the
remaining nine for placement in the fourth stratum; it found none. The cause of this was free
variation: the multiple outputs derived from the same underlying form led the algorithm to
conclude that every one of the as-yet unranked constraints was dominated. Thus, no new stratum
could be formed.

The proper interpretation of this situation is partly a matter of choice. One view is that the
algorithm simply fails to yield an answer in such a case. Indeed, one good property of the
Constraint Demotion algorithm is that it permits a rigorous determination that it has reached this
state (Tesar and Smolensky 1993:20).

Another solution that has occurred to us would be to suppose that the residue of unrankable
constraints constitutes, en masse, the lowest stratum in the grammar, with stratum-internal free
ranking (for definition of this see 84 below). In this approach, the result of Constraint Demotion
as applied to the llokano case would be a four-stratum grammar, with the unrankable nine
constraints construed as occupying a single fourth stratum, placed below the strata of (23). We
have calculated the set of outputs that is generated by such a grammar; they are listed in (24).

(24) Forms with a freely ranked lowest stratum

Underlying form Acceptable Outputs lll-Formed Outputs

/ta?o-en/ taw.?en, ta?.wen (none)

/patlak/ pa.lak *pa?.dak

/1ab?aj/ lab.?aj *la.baj

/trabaho/ tra.ba.ho *tar.ba.ho

/?ajo-en/ ?aj.wen *?a.jwen

/HRED-bwaja/ bui.bwa.ja, bwaj.bwa.ja, *bwaibwa.ja
bub.wa.ja

/basa-en/ ba.sa.?en (none)

As can be seen, the forms generated include several that are ill-formed in llokano. In other
words, depending on interpretation, Constraint Demotion either fails to return a grammar for
llokano, or it returns an incorrect one.

The above discussion holds for the Batch version of Constraint Demotion. We have also
submitted the llokano data to other versions: On-Line (Tesar and Smolensky 1993:16), and
Error Driven (Tesar and Smolensky 1998:247). These versions of Constraint Demotion behave
slightly differently than the Batch version when given free variation data: they vacillate eternally
in the rankings they develop, with the current state determined by whatever was heard last.

The forms generated under the vacillating sequence of rankings include all the free variants
in the learning data. But they also include a substantial fraction of incorrect outputs as well,
including all the ill-formed cases in (24). We conjecture that this results from a fundamental
property of Constraint Demotion: it responds to input data with a radical change, namely
wholesale reranking. In contrast, the Gradual Learning Algorithm responds conservatively to
data, especially when plasticity is low. As a result, it avoids trouble that “reckless” Constraint
Demotion cannot.
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We conclude (as Tesar and Smolensky had anticipated) that none of the various versions of
Constraint Demotion is suited to the analysis of free varidfion.

3.8 Gradience as a Means to an End

A point worth making in this connection is that in the llokano simulation, the Gradual Learning
Algorithm emerges with a grammar that is quite conventional in character: it designates the
well-formed outcomes as well-formed and the ill-formed outcomes as ill-formed, insofar as
vanishing rarity is considered as essentially equivalent to ill-formedness. Thus, in a certain
sense, the end product of the gradient ranking process is not gradient at all. The near-crystalline
structure of the finished grammar is created as the limit of a series of ever less-gradient
grammars, when the rankings that have to be firm settle into widely separated positions while the
crucially free rankings remain free.

It would appear that a statistical learning procedure may indeed be the right approach to
learning optionality. As Dell (1981) pointed out, free variation poses very serious learnability
problems, because one cannot know in principle whether a particular type of form might not at
some point show the free variation seen in other, similar forms. The answer we offer is that a
gradual algorithm, given enough time and exposure to the data, has the capacity to distinguish
the accidentally missing from the systematically missing.

3.9 Robustness in the Face of Erroneous Input Data

It has been argued (Gibson and Wexler 1994:410, Frank and Kapur 1996:625) that learning
algorithms should be robust against occasional errors in the input data. Any error that was taken
too seriously by a learner might result in permanent “damage” to the grammar, placing it in a
lasting state of overgeneration.

We have tested the Gradual Learning Algorithm for this possibility, with a fictional (but
plausible) version of llokano that abstracts away from free variation, allowingawlfen for
/ta?o-en/ andbwaj.bwa.ja for /HRED-bwa.ja/. We confronted the Gradual Learning
Algorithm with this pseudolanguage, using the same training regimen we had used for real
llokano. After it had learned a grammar, we gave it a single additional learning takeven,
which is ill-formed in this hypothetical variety.

This token had an extremely small influence on what the grammar generated, increasing the
probability of a ta?.wen outcome from 1.4-18%to 1.6-1633, and decreasing the probability of
a *tar.ba.ho outcome from 1.1-187 to 1.0-1617. The ranking values had already been set far
apart by a long series of earlier data, so that no single token could change them enough to induce
any detectable change in the output pattern.

A stricter test is to include error forms throughout the learning regimen. We tried this by
including *ta?.wen at random intervals at 0.1% of the frequencygadf.?en. The response of
the algorithm to these errors was modest at all stages, and culminated in ‘frequency matching’
(84): the grammar that was eventually learned generga@dven at a 0.1% rate.

We administered an error test to the other algorithms as well. For the batch version of
Constraint Demotion, hearing a single speech error is, of course, instantly fatal: since all data are
treated equally, the error causes the algorithm to crash in exactly the way discussed in 83.7.

14 |n examining the ability of On-Line Constraint Demotion to learn freely-ranked strata, we are preceded by
Broihier (1995). Broihier's conclusions are similar to our own.
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Error Driven Constraint Demotion is less fragile, but nevertheless responds to errors in rather
drastic ways. When this algorithm is giveta®.wen, it carries out a major constraint demotion

in order that ta?.wen will emerge as more harmonic theaw.?en. Merely hearing another
token oftaw.?en does not suffice to repair this damage to the grammar, because Error Driven
Constraint Demotion does not reverse its prior action; instead, it carries out a new constraint
demotion that generatesat.ba.ho. *tar.ba.ho. is repaired onctra.ba.ho is heard, but at the

cost of generating?®a.jwen (which is repaired onc@aj.wen is heard, ending the chain).
Moreover, the grammar that arose from hearitg.wen in the first place also generated
*pat.lak, whose repair (bpa.lak) sometimes leads td#.baj, depending on the order in which

the forms are encountered. The upshot is that a single error can initiate a cascade of damage that
is only repaired by reconstructing a large proportion of the original rankings from scratch.

The Gradual Learning Algorithm avoids such cascades by responding modestly to novel
forms, merely changing its propensity to generate them, instead of giving them full credence at
once. As a result, during recovery time, while the algorithm is readjusting the ranking values
back to the optimum, it continues to generate acceptable outputs.

As a final comparison, we fed pseudo-llokano forms of the type just described, with
randomly selected error forms included at a total rate of 1%, to both the Gradual Learning
Algorithm and Error Driven Constraint Demotion. The Gradual Learning Algorithm yielded a
stable grammar whose error rate was 0.94% after 21,000 learning data and 1.09% after 100,000
learning data (averaged over 100 replications). In other words, the error rate of the Gradual
Learning Algorithm was about equal to the rate of error forms in the learning data. Error Driven
Constraint Demotion produced a sequence of rapidly changing grammars, so we tested its output
after every 1000 learning data, and averaged the result over a total of 10 million learning data.
The average error rate came out to 2.6%, roughly 2.5 times that of the Gradual Learning
Algorithm. For 16% of the total duration of the simulation, the grammar learned by Error Driven
Constraint Demotion was in a state for which there was at least one correct form that it could not
generate.

4 Textual Frequencies: Finnish Genitive Plurals

Anttila (1997a,b) has developed and tested an Optimality-theoretic model intended to predict the
relative frequency of forms. His theory and data are of interest here, since as we have already
mentioned, it is a property of grammars learned by the Gradual Learning Algorithm to mimic the
frequencies of the learning set. In this section, we deploy the Gradual Learning Algorithm
against Anttila’s data and compare results. We also address the question of which of the two
models is more likely to be generalizable across languages.

Anttila’s model has a striking simplicity. As a basis for generating free variation, he assumes
stratum-internal free ranking. That is, he adopts strata of the type employed by Tesar and
Smolensky, but with a different interpretation: a candidate is considered to be a legal output if it
emerges as the winner undary possible total ranking that respects the domination relations
imposed by the straf® To make predictions about frequency, Anttila (following Reynolds

15 For other interpretations of “tied” constraints in Optimality Theory, see Clements (1997:315), Pesetsky
(1998:372), and Tesar and Smolensky (1998:241).
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1994) sums theaumber of rankingghat can generate each outcome, and posits that this is
proportional to the relative frequency with which the outcomes will be observed.

Anttila tests his model against a large data corpus consisting of Finnish genitive plurals. The
match between the model’'s predictions and the data is remarkably accurate. We attempt to
model the same data here.

The Finnish genitive plural can be formed in either of two ways: with a weak ending,
typically /-jen/, or with a strong ending, typicall{siden/. For instance, the stenaapuri
‘neighbor’ allows both endings@a.pu.ri.en andnaa.pu.rei.der), but many other stems only
allow one of the two endings or have a clear preference for one of the two. Since stems ending
in a heavy syllable (CVC or CVV) invariably take the strong endmgu(‘tree’ - pui.den;
potilas ‘patient’ - pé.ti.lai.den), we will follow Anttila in considering only stems with light
final syllables. According to Anttila, the choice between the weak and the strong ending is made
on purely phonological grounds.

4.1  The Constraint Inventory

We refer the reader to Anttila’s work for full discussion of the constraints assumed. We found
that we could derive the corpus frequencies accurately using only a subset of his constraints.
Most of the constraints we omitted were constraints that have little support from phonological
typology. These include, for example, a requirement that low vowels occur in heavy syllables, or
that heavy syllables be stressless. This is not an objection to Anttila’s analysis, but merely
reflects a difference of approach: Anttila emphasizes constraint inventories that include all the
logical possibilities for the structures under consideration.

The constraints we did include in our replication were as follows. First, there is a correlation
between weight and stress, which is given by the constraint below:

(25)
*WEIGHT-TO-STRESS “no unstressed heavy syllables” (Prince and Smolensky 1993:59)
Second, Anttila posits that, as in a number of languages, there is a connection between vowel

height and stress. Following the method laid out in Prince and Smolensky (1993:67-68), this is
implemented by two families of three constraints, each respecting an inherent internal ranking:

(26)
*I' >> *Q' >> *A': “no stressed syllables with underlying high (mid, low) vowels”
*A >>*Q >>*:  “no unstressed syllables with underlying low (mid, high) vowels”

In principle, we could have had the algorithm actively maintain these inherent rankings (by
demoting a lower-ranked constraint as soon as its sister threatens to overtake it), but in fact they
emerged from the data in any event.

Third, Anttila adopts some relatively standard constraints from the analysis of stress (Prince
1983, Selkirk 1984):

16 These constraints must be interpreted in a particular fashion. In the sense Anttila intends, they refer to
vowel height in thestem This height is often altered phonologically in the genitive plural, dsaméra-iden/ —
[k&dmeroiden] ‘cameraGEN PL’. Anttila’s assumption is that in this example'*Aot *O, is violated.
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(27)
*CLASH: “no consecutive stressed syllables”
*LAPSE “no consecutive unstressed syllables”

Since according to Anttila, *(AsH is undominated, we did not include any candidates that
violate it. We likewise followed Anttila in tacitly assuming constraints that ensure the invariant
initial main stress of Finnish.

Lastly, Anttila posits constraints that directly regulate the weight sequence, banning
consecutive syllables of the same weight:

(28)

*H.H:  “no consecutive heavy syllables”
*L.L:  “no consecutive light syllables”

4.2  Anttila’s Account of Variation

Anttila arranges his constraints (including nine we left out) into five strata. He assumes strict
ranking for constraints in separate strata, and free ranking within strata. For each underlying
form, there are two candidate outputs, one for each allomorph of the genitive plural. The
frequency of the two rival outputs is posited to be proportional to the number of rankings (within
the free strata) that generate them.

For instance, the stekorjaamo ‘repair shop’ has the candidat&sr.jaa.mo.jen and
kér.jaa.moi.den, which have equal numbers of violations for all constraints in the top three
strata. Therefore, the outcome will be determined by the constraints in the fourth stratum. Now,
kér.jaa.mo.jen has more *lAPSE violations, ankor.jaa.moi.den has more violations of *H.H,

*H', and two other constraints specific to Anttila’'s analysis. WhesP4E is on top,
kor.jaa.moi.den emerges; if any of the other four is on t&pr.jaa.mo.jen wins. With random
ordering within strata, Anttila thus predidtér.jaa.moi.den in 20 percent of the cases, and
kor.jaa.mo.jen in 80 percent. These values match well with the attested values in Anttila’s
corpus, which are 17.8 and 82.2 percent, respectively. Similar cases in the data work in similar
ways.

4.3  Modeling the Finnish Data with the Gradual Learning Algorithm

We assembled as many structurally distinct examples as we could find from Anttila’s work. For
every underlying form type, we considered two output candidates, one with the weak and one
with the strong genitive plural allomorph, and assessed both of these for their violations of the
constraints given above. We also arranged to present the algorithm with appropriate tokens of
each type, in the relative frequencies with which they occur in Anttila’s corpus. It should be
noted that these frequencies often differ greatly; for example, stems of theotgde H [I]  /

occur only twice in Anttila’s data corpus, while stems of the #pe [A] ; / occur 720 times.

We ran the Gradual Learning Algorithm on the data. Given the goal of maximally accurate
frequency matching, we felt it appropriate to use a larger number of learning data than for
llokano. We presented a total of 388,000 data to the algorithm, expecting it to match frequencies
in a fairly refined way (see Appendix A for further details of the simulation). In a representative
run, the algorithm obtained the following ranking values for the constraints:
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(29) Ranking values from the Finnish simulation

WEIGHT-TO-STRESS ~ 288.000 *O 196.754
*! 207.892 *|LAPSE 188.726

*L.L 206.428 *O 3.246

*A 199.864 *A 0.136

*H.H 199.274 *| —7.892

We then tested the algorithm for accuracy in mimicking the input frequencies. As before, we
did multiple runs to make sure that individual runs were not yielding idiosyncratic outcomes.
The numbers in table (30) reflect an average taken from 100 separate applications of the
algorithm, each starting from an initial state with all constraints ranked at 100. After each run,
every underlying form was submitted to the resulting grammar 100,000 times to obtain output
frequency estimates. Table (30) gives the average predicted frequencies of all the various types,
both as they are derived in Anttila’s proposal, and as they emerge from the 100 grammars
learned by the Gradual Learning Algorithm. Variation across runs of the algorithm is indicated
by the standard deviations shown in the final column.
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(30) Results of learning Finnish genitive plurals
Stem Example Candidates Data DataAnttila GLA GLA
type (%) predicted mean s.d.
(%) (%) (%)
XA kala ka.lo.jen 500 100 100 100 0
‘fish’ ka.loi.den 0 0 0 0 0
Xl lasi la.si.en 500 100 100 100 0
‘glass’ la.sei.den 0 0 0 0 0
XLA kamera ka.me.roi.den 720 100 100 99.48 0.16
‘camera’ ka.me.ro.jen 0 0 0 0.52 0.16
XLO hetero hé.te.roi.den 389 99.5 100 99.43 0.19
‘hetero’ hé.te.ro.jen 2 0.5 0 0.57 0.19
XLI naapuri néa.pu.ri.en 368 63.1 67  69.51 1.16
‘neighbor’ naa.pu.rei.den 215 36.9 33 30.49 1.16
XHA maailma maa.il.mo.jen 45 495 50 42.03 2.22
‘world’ maa.il.moi.den 46 50.5 50 57.97 2.22
XHO korjaamo koér.jaa.mo.jen 350 82.2 80 8161 0.92
‘repair shop’  koér.jaa.moi.den 76 17.8 20 18.39 0.92
XHI poliisi po.lii.si.en 806 98.4 100 100 0
‘police’ po.lii.séi.den 13 1.6 0 0 0
XXLA taiteilija tai.tei.li.joi.den 276 100 100 99.48 0.17
‘artist’ tai.tei.li.jo.jen 0 0 0 0.52 0.17
XXLO luettelo [U.et.te.loi.den 25 100 100 99.44 0.19
‘catalogue’ l0.et.te.lo.jen 0 0 0 0.56 0.19
XXLI ministeri mi.nis.te.ri.en 234 85.7 67 69.49 1.16
‘minister’ mi.nis.te.réi.den 39 14.3 33 30.51 1.16
XXHA  luonnehdinta lGon.neh.din.to.jen 1 100 100 100 0
‘characterization’ lon.neh.din.toi.den 0 0 0 0 0
XXHO  edustusto é.dus.tus.to.jen 84 100 100 100 0
‘representation’ é.dus.tus.toi.den 0 0 0 0 0
XXHI margariini mar.ga.rii.ni.en 736 100 100 100 0
‘margarine’ mar.ga.rii.nei.den 0 0 0 0 0
XXXLA ajattelija a.jat.te.li.joi.den 101 100 100 99.48 0.17
‘thinker’ a.jat.te.li.jo.jen 0 0 0 0.52 0.17
XXXLO televisio té.le.vi.si.0i.den 41 100 100 99.43 0.19
‘television’ té.le.vi.si.o.jen 0 0 0 0.57 0.19
XXXLI  Aleksanteri A lek.san.te.ri.en 15 88.2 67 69.51 1.13
‘Alexander’ A.lek.san.te.réi.den 2 11.8 33  30.49 1.13
XXLHA  evankelista é.van.ke.lis.to.jen 2 100 100 100 0
‘evangelist’ é.van.ke.lis.toi.den 0 0 0 0 0
XXLHO italiaano i.ta.li.aa.no.jen 1 100 100 100 0
‘Italian’ i.ta.li.aa.noi.den 0 0 0 0 0
XXLHI  sosialisti sé.si.a.lis.ti.en 99 100 100 100 0
‘socialist’ sé.si.a.lis.tei.den 0 0 0 0 0
XXHHO koordinaatisto  koéor.di.naa.tis.to.jen 8 80 80 81.61 0.91
‘coordinate grid’ kéor.di.naa.tis.toi.den 2 20 20 18.39 0.91
XXHHI  avantgardisti a.vant.gar.dis.ti.en 2 100 100 100 0
‘avant-gardist’ a.vant.gar.dis.téi.den 0 0 0 0 0

It can be seen that both models predict the empirical frequencies fairly well. The mean
absolute error for the percentage predictions of Anttila’s model is 2.2%, whereas that for the
Gradual Learning Algorithm, averaged over 100 runs, is 2.53% (s.d.=0.16%). The models share
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similar problems, most notably in predicting a zero percentagedfdii.séi.den Anttila has
suggested (personal communication) that the constraint system may need amplification to
achieve further accuracy. At this stage of research, we think that the performance of our
machine-learned grammars may be considered to be roughly at the same level that of Anttila’s
hand-crafted analysis.

4.4  Theories of Frequency

In more general terms, we wish to consider the types of frequency distributions that the two
theories (stratal grammars vs. continuous ranking) can treat. We lack firm data to decide this
point, but we think we can identify the kind of data that should be considered.

We have in mind cases of free variation in which one free variant is far more common than
the other. In our own speech, we have identified possible cases of this sort:

 Dutch words that normally end with final schwa are sometimes pronounced witmfinal
thusNijmegen'neime:ys, 'neime:yan]. In prepausal positiofin]-less forms are far more
frequent than forms witm].

* English words ending in phonemjc.{t,d}on/ are usually realized with the schwa elided
and the/n/ syllabic, thusSweden['swi:dn]. Forms in which the schwa surfaces, like
['swi:dan], are quite unusual.

* English pronunciations in which,d/ are eligible for realization as flaps, but show up
unaltered (e.dhitting ['hitip]) are possible, but quite infrequent.

Let us assume for purposes of argument that the relative frequencies in these cases are 99 to 1.
Now, in the grammatical model assumed by the Gradual Learning Algorithm, it is quite
straightforward to model such frequencies. For instance, if each of the two rival outcomes
violates just one constraint not violated by the other, a 99 to 1 ratio will be obtained whenever
the ranking values of the two constraints differ by 6.58 on the ranking scale (where noise = 2.0).
On the other hand, in the model Anttila assumes, such frequencies can be obtained only under
very special circumstances. For instance, they would be obtained if in a single stratum 99
constraints favor one outcome and one favors the other, or if within a stratum of five constraints
only one of the 120 possible total rankings gives rise to the rare outcome.

We think that for cases of the kind we have mentioned, the analysis is likely to be rather
simple, with just a few constraints that do not interact in elaborate ways. Thus in general we
anticipate difficulty for Anttila’s model in covering cases that involve large disparities among
output frequencies. In assessing the empirical adequacy of the two grammar models, careful
study of cases like those we have mentioned will be necessary.

5 Intermediate Well-Formedness: Light and Dark/1/

It is a very common experience for linguists gathering intuitions about well-formedness to find
that certain forms are felt to be neither impossible nor perfect, but somewhere in between.
Dealing with such cases is often a theoretical challenge. When the matter is addressed, it is
usually covered in terms specific to the analysis in question. We consider here a much more
general explanation.
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As we have both noted in earlier work (Boersma 1997; Hayes, to appear), it is likely that
many intermediate well-formedness judgments originate in patterns of frequency in the learning
data. Here is our reasoning:

* In the limiting case, a language learner encounters certain forms @ggesh errors It
is clear that such forms ultimately fail to have any real influence on the grammar that
emerges, despite the fact that the learner often has no way of identifying them as errors
when they are encountered.

» At the opposite extreme, forms that are abundantly attested in the learning data will
virtually always lead to a grammar that classifies them as well formed.

» Thus, the interesting cases are the ones that are definitely rare, but not as rare as speech
errors. These are likely candidates for emergence in the adult grammar as intermediately
well-formed. The language learner lacks the information that would be needed to assign
them with confidence to either of the above categories, and thus rationally adopts an
intermediate view.

To this basic account of intermediate well-formedness, we wish to add immediately our
acknowledgment of a commonplace, namely that speakers frequently produce forms they have
never heard before. In the model assumed here, this is because frequencies in the learning data
have their influence at the level of grammar construction, rather than in some naive procedure
that simply records the frequencies of forms in memory.

Our basic premise, then, is that intermediate well-formedness judgments often result from
grammatically encodable patterns in the learning data that are rare, but not vanishingly so, with
the degree of ill-formedness related monotonically to the rarity of the pattern. Therefore, with a
suitable link-up one can in principle have the Gradual Learning Algorithm learn intermediate
well-formedness judgments by having it learn frequencies.

To explore this possibility, we re-examine data concerning the distribution of light and dark
/1/ in English from Hayes (to appear). Hayes analyzed these data in the framework of Hayes and
MacEachern (1998), which, like the one assumed here, posits a continuous scale of ranking
strictness. The HaygéslacEachern model, however, is considerably less restrictive than the one
adopted here: it permits individual constraints to be affiliated with “bands,” each with its own
width, that specify the range of selection points. Moreover, this model permits parts of each
band to be designated as “fringes,” which lead to intermediate well-formedness if a selection
point falls within them. Plainly, if the less powerful theory employed here can account for the
same data, this would constitute an advance, particularly since this theory (unlike the
HayegMacEachern theory) comes with its own learning algorithm.

5.1 The/l/ Data

The data we model is a set of consultant judgments of light vs/Harkvarious English words.

We model the means of the judgments of ten consultants, on a scale in which 1 is best and 7 is
worst. The forms presented for judgment and the constraints used in modeling the data are
presented in detail in Hayes (to appear) and we will only review them briefly here.

In various American English dialectgl/ is obligatorily light in two positions: initial
(Louanneg light) and pretonic dllow, and agairight). It is obligatorily dark in final and
preconsonantal positiobéll, help. In medial, pre-atonic position there is free variation: forms
like Greeleycan have light or darkl/.
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There are also effects of morphology. Where a vowel-initial stressless suffix is added to an
/1/-final stem, as intuchyjfeel-y, one finds a fairly strong preference for dfifk This, we
assume, is a gradient effect of output-to-output correspondémeehy-feelystrongly prefers the
dark [t] inherited fromfeel Stronger output-to-output effects occur at higher levels of the
phonological hierarchy: thus the formail it, with a word break, favors dafk] even more
strongly tharfeel-y. Lastly, there is a paradigmatic effect that goes in the opposite direction:
/1/-initial suffixes attached to vowel-final stems rather strongly prefer lightExamples are
grayling, gaily, andfreely.

To test these claimed judgments, Hayes asked ten native speaker consultants to rate both the
light and dark versions (as Hayes pronounced them) of several representative forms. The ratings
that emerged were as follows:

(31) Acceptability judgments on light and datli in English

Mean Rating as Light Mean Rating as Dark

a. light 1.30 6.10
b. Louanne 1.10 5.55
c. gray-ling, gai-ly, free-ly 1.57 3.34
d. Mailer, Hayley, Greeley, Daley 1.90 2.64
e. mail-er, hail-y, gale-y, feel-y 3.01 2.01
f. mail it 4.40 1.10
g. bell, help 6.60 1.12

It can be seen that the general tendencies outlined above do indeed appear in the judgments:
initial (31a,b), final (31g), pretonic (31a), and preconsonantal (31g) positions involve near-
categorical judgments; medial pre-atonic position in monomorphemes (31d) yields essentially
free variation; and gradient preferences, in both directions, are indeed reported where forms are
morphologically (31c,e) or syntactically (31f) derived.

52 The/1/ Simulation: Constraints

The constraints adopted by Hayes largely follow current proposals for reference to phonetic
principles in Optimality Theory (e.g. Steriade 1997, Boersma 1998, Kirchner 1998).

Dark[1] is assumed to be a lenited form, with a diminished alveolar gesture. It appears as the
result of a context-free lenitional constraint, stated informalljl/ass DARK. However, darkt],
being identifiable to a large degree from its effect on a preceding vowel, is required to occur
postvocalically, by a constraint termedm®X [t] IS POSTVOCALIC.

Two other perceptually-driven constraints govern light They hold in contexts where the
acoustic cues that rendgi identifiable are salient, thus repaying the greater articulatory effort
needed. Particular salience is found pretonically, reflected in the conswa&mndnNrC /1/ 1S
LIGHT. Note that in general, it is pretonic position in English that demands fortis allophones,
such as aspirated stops, unflapped alveolars, and so on. Failing the optimal pretonic context, the
second best context is prevocalic position, which is the most favored licensing position for
articulatorily effortful segments crosslinguistically. This principle is reflected in the constraint
PREVOCALIC /1/ IS LIGHT. As one would expect, it emerges empirically thREFONIC/1/ IS
LIGHT is ranked higher thanREVOCALIC /1/ IS LIGHT.
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The constraints just given dictate the distribution of the allophondg of monomorphemic
forms. HRETONIC /1/ IS LIGHT is undominated, forcing lightl] in light. DARK [t] IS
PosTvocCALIC is likewise undominated, forcing lighif] in Louanne For intervocalic, pre-atonic
/1/, free ranking of 1/ 1S DARK and FREVOCALIC /I/ IS LIGHT results in free variation.

To model the effects of morphology, Hayes posits output-to-output correspondence
constraints. Paradoxically, these constraints cannot be stated/oper se. This is because in
grayling and similar forms, the crucial liglt] does not actually occur in the base fagray.

Hayes’s approach is to base the system on the salient vowel allophones that precedf a dark
(e.g.[ea] in bail vs. the normaler] in bay). Since the matchup of vowel allophones/to
allophones is quite obligatory lge1l, *bed), it is possible to impose output-to-output
correspondence on vowel quality rather tindarkness. Thus, the diphthofeg] in gray grer

is normally required to appear in derived forms limyling grerly, and due to allophone
matching, the following'l/ must therefore be light. Likewise, th@] in feel fiat is normally
required to appear in derived forms likeely fisli. The output-to-output correspondence
constraints that are needed abeNT-OO(vowel features, morphological), to cover cases like
gray-ling, mail-er, andfeel-y and bENT-OO(vowel features, phrasal), to coveail it. We will

find that, as appears to be the norm cross-linguistically, phrasal output-to-output correspondence
is ranked higher.

To account for the observed judgments, Hayes (to appear, 83.7) arranges the fringes of the
constraints so that dafk} 2gray-ling and light{I] ?mailer (both taken to be rated as “?”) can
only be derived by making use of a “?"-class fringe, while lighteail it (assumed to be “??”)
can only be derived by making use of a “??"-class fringe. Intuitively, the various cases result
from the following constraint interactions: in monomorphemic forms, competition between an
articulatorily-driven lenitional constraint, and various contextual, perceptually-driven constraints
derives the basic patterns of obligatory and optipijadr [t]. In paradigms, the strong (but not
invariant) effects of output-to-output correspondence make themselves felt as the result of semi-
or near-obligatory constraint rankings, enforced with fringes.

5.3 Learning the/l/ Pattern with the Gradual Learning Algorithm

As noted above, our interest is in determining whether the tighter theoretical approach we adopt
here, with uniform constraint strictness distributions, can provide an adequate account of the data
modeled earlier by Hayes with stipulated strictness bands and fringes. We also hope to make use
of the hypothesis stated above: that many intermediate well-formedness judgments are the result
of frequency effects in the learning data.

To form a bridge between conjectured frequencies and well-formedness judgments, we adopt
a fully explicit hypothesis in the form of equations that relate the two. These equations are
presented in Appendix B. We use one equation to convert empirically-gathered gradient well-
formedness judgments into conjectured frequencies, for all seven forms. These frequencies are
then fed to the Gradual Learning Algorithm, which will produce (if all goes well) a grammar that
closely mimics them. Then, by feeding the predicted frequencies into the mathematical inverse
of the first equation, we get predicted judgments, which can then be compared with the original
data. Summarizing, our simulation takes the following form:
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(32) Observed Conjectured Learning Predicted Predicted
Judgments ~ Frequencies ~ Algorithm ~ Frequencies ~ Judgments

— > (COMPANISON) =

One further complication must be dealt with before we present how the simulation came out.
The frequency percentages of competing forms always sum to 100, but the sum of the light and
dark judgments is not constant. This gives rise to difficulties in setting the equations, difficulties
which we resolved by modeling tldeferencesn judgment for light vs. darkl/ rather than the
raw judgments. This is, of course, a procedure that linguists often follow when presenting
delicate cases to real consultants.

We began our simulation by converting the averaged subject data into judgment differences,
then converting the differences into conjectured frequencies with equation (40) of Appendix B.
The results are shown in table (33).

(33) Converting well-formedness judgment to conjectured probability of occurrence

Word type Judged Judged Judgment Conjectured
as light as dark Difference Frequency
of Light Variant

a. light 1.30 6.10 4.80 99.956%
b. Louanne 1.10 5.55 4.45 99.923%
c. gray-ling, gai-ly, free-ly 1.57 3.34 1.77 94.53%
d. Mailer, Hayley, Greeley, Daley 1.90 2.64 0.74 76.69%
e. mail-er, hail-y, gale-y, feel-y 3.01 2.01 -1.00 16.67%
f. mail it 4.40 1.10 -3.30 0.49%
g. bell, help 6.60 1.12 -5.48 0.0011%

We then submitted seven representative forms from (33), with relative output frequencies as
given in the last column, to the Gradual Learning Algorithm. The details of the training schedule
are given in Appendix A. The ranking values that emerged are given in (34):

(34) Ranking values after English simulation

Constraint Ranking value
IDENT-OO(vowel features, phrasal) 108.146
DARK [1] IS POSTVOCALIC 107.760
PRETONIC/1/ ISLIGHT 103.422
IDENT-OO(vowel features, morphological) 103.394
PREVOCALIC /1/ ISLIGHT 100.786

/1/ 1S DARK 99.084

Running the grammar for 1,000,000 trials, we obtained its predicted frequencies. Lastly, we
used equation (41) of Appendix B to convert the predicted frequencies back into predicted
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judgment differences! Table (35) gives the outcomes; repeated runs of the whole simulation
gave very similar results.

(35) Results of English simulation

Word type Observed Projected Modeled Predicted
Judgment Frequency Frequency Judgment
Difference  of Light of Light  Difference

Variant Variant
a. light 4.80 99.956% 99.938% 4.59
b. Louanne 4.45 99.923% 99.904% 4.31
c. gray-ling, gai-ly, free-ly 1.77 94.53% 95.76% 1.94
d. Mailer, Hayley, Greeley, Daley 0.74 76.69% 72.62% 0.61
e. mail-er, hail-y, gale-y, feel-y -1.00 16.67% 16.63% -1.00
f. mail it -3.30 0.49% 0.47% -3.33
g. bell, help -5.48 0.0011% 0 —-6.00

From a comparison of the boldfaced columns, it emerges that the algorithm was able to model
the well-formedness judgments with considerable accuracy. The values derived for the judgment
differences differ from the human originals by an average of only 0.17.

It is also interesting to compare the pattern of ranking values obtained by the algorithm with
the pattern of “fringes” posited in Hayes’s hand-crafted grammar. In (36) below, the crucial
forms are given along with their well-formedness value as assigned by Hayes’s grammar. In the
same cells is also given the distance in ranking value of the two constraints that must be ranked
in “reversed” fashion, as in (4b), in order for the depicted form to be derived.

(36) Comparison of ranking distances with fringe labels

IDENT-OO(vowel IDENT-OO(vowel PREVOCALIC /1/
features, phrasal) features, morphological) ISLIGHT
PREVOCALIC /1/ 7.360 2.608 —
IS LIGHT 27mai[l] it *eellly
/1/ 1S DARK — 4.310 1.702
2gray[t]ing OGreeftley

For Greeley, Hayes allows the strictness bands REPOCALIC /1/ IS LIGHT and/1/ IS DARK
to overlap entirely, predicting two perfect outcomes. The present system essentially repeats this
claim, but imposes a rather small difference in their ranking values, namely 1.702. This
difference indeed corresponds to a slight preference in the consultants’ judgments fof iight
Greeley. The forms feellly and @ray[t]ling are both derivable in Hayes’s system by using a
“?” fringe; here, they are derivable from the less-likely ranking of constraint pairs whose ranking
values are 2.608 and 4.310 units apart, respectively. Again, this matches to an actual difference,

17 This raises the question of whether real speakers likewise obtain their judgments by a process of repeated
sampling. We are neutral on this point. Our crucial claim is that speakers internalize a grammar that relates well-
formedness to frequency, because this is a rational learning strategy. In using their grammar to make judgments,
speaker may well use mechanisms other than the Monte Carlo method.
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in the predicted direction, in the consultants’ judgment®e[Ry really was felt to be better

(both absolutely and relative to its counterpart) trgmayft]ing. Lastly, ?#ai[l] it is derived in
Hayes’s earlier system by use of a “??” strictness band; here, it is derived using the rather
unlikely ranking of two constraints whose ranking values stand 7.360 units apart.

What emerges from these comparisons is that the grammar learned by the Gradual Learning
Algorithm is fairly close in form to Hayes’s hand-crafted grammar. But it is subtler and captures
refined distinctions of judgment that elude the too-coarse categories provided by the fringe
system.

The tentative conclusion we draw from this simulation is that, at least for this particular case,
the theory of grammar assumed by the Gradual Learning Algorithm slices a GordianTkret.
language-specific arrangement of strictness bands and fringes posited by Hayes in his hand-
crafted grammar are unnecessary. Instead, an entirely general system of gradient constraint
ranking—all constraints have continuous “fringes,” identical for all—suffices to handle the facts.

6 Conclusion

The Gradual Learning Algorithm has here successfully dealt with representative cases chosen to
embody important challenges in the theory of learnability: free variation (83); robustness against
speech errors (83.9); matching corpus frequencies (84); and gradient well-formedness (85).

Phonological learning is a difficult area, and many of its problems have yet to be fully solved.
Among these are phonotactic learning (fn. 4), discovering hidden structure, relating variation to
speaking style (Appendix C), and discovering language-specific constraints, if such exist. An
effective constraint-ranking algorithm is likely to be only a part of the theory that ultimately
emerges. We think that as it stands, however, the Gradual Learning Algorithm has some
potential as a research tool, helping linguists take on new problems, especially cases involving
intricate patterns of free variation and intermediate well-formedess.

18 The Gradual Learning Algorithm is available as part of the Praat speech analysis system, obtainable from
http://lwww.fon.hum.uva.nl/praat/; and also as part of the OTSoft constraint ranking software package available at
http://www.humnet.ucla.edu/linguistics/people/hayes/.
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Appendix A: Training Schedules

We have little secure knowledge of how schedules for plasticity and other values affect the speed
and accuracy of learning. We find that quite a few regimes lead to accurate final results, though
they may differ greatly in speed.

Plasticity. A small plasticity value does a better job of matching learning data frequencies in the
end, but a large plasticity value nears its goal faster. The virtues of the two approaches can be
combined by adopting a learning schedule that decreases the plasticity as learning proceeds.
This seems in principle realistic: in humans, grammar apparently stabilizes in adulthood, as
nonlexical learning slows or halts.

Evaluation Noise. We also find that letting the evaluation noigeif (5) above) diminish
during the course of learning improves accuracy, particularly in establishing large differences in
ranking values between constraints that ultimately must be ranked categorically. At any given
stage of learning, however, the evaluation noise is kept the same for all constraints.

Details of Individual Simulations. All learning schemes involved a sequence of stages, in
which the number of forms digested per stage was usually set at 1000 times the number of
underlying forms. The scheme for the llokano simulation was as follows:

(37) Training schedule for llokano

Data Plasticity Noise
First 7000 2 10
Second 7000 0.2 2
Last 7000 0.02 2

The final noise level of 2 was considered to be the permanent value characteristic of the adult
system, and was accordingly used (here as elsewhere) to measure the output distribution of the
final grammar.

The training regimes for Finnish genitive plurals and English light and /dankere as in
(38):

(38) a. Training schedule for Finnish

Data Plasticity Noise
First 22,000 2 10
Second 22,000 2 2
Third 22,000 0.2 2
Fourth 22,000 0.02 2
Last 300,000 0.002 2
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b. Training schedule for English

Data Plasticity Noise
First 6,000 0.2 2
Second 300,000 0.02 2
Last 300,000 0.002 2

In these simulations, we used more extended training regimens, since we had a different purpose
in mind. For llokano, we had been curious to see how few forms it would take for the grammar
to achieve a state of high accuracy. For Finnish and English, we sought to model the mature
adult state, which occurs after extensive learning has provided sufficient exposure even to very
rare forms.

We found that training schedules different from the above produce results that may be less
accurate, but only slightly so. For example, when we used the Finnish regimen for llokano, the
number of illegal forms generated went up from 1 per 100,000,000 (83.5) to 1 per 2,000,000,
though frequency matching improves from 0.46% to 0.10%. When we submitted the English
forms to the Finnish regimen, we found that the average error in predicting judgment differences
went up from 0.17 to 0.89; the increased error resulted mainly from assigning categorically bad
judgments to darkt] in light andLouanne and sometimes to light] in mail it, i.e., many of the
forms that were rated “??” by humans are learned as “*” judgments instead.

Time to Convergence One can ask whether the amount of data that must be fed to the
algorithm to obtain accurate results is excessive in comparison with what real learners are likely
to encounter during the acquisition period. We feel that the numbers we used are probably
acceptable. It should be recalled that most constraints have considerable generality and are
instantiated by large numbers of words. Given the many thousands of words heard by a child in
an average day, there is reason to believe that real-life learning data are copious enough to
support learning with the Gradual Learning Algorithm. For some estimation of convergence
times in general, see Boersma (1998:328).

The Course of Learning It is also worth considering the route that the Gradual Learning
Algorithm takes in arriving at the final set of ranking values. In chart (39), we give the output
distributions for the intermediate grammars obtained during the course of the llokano simulation.
Each output distribution was calculated by running every underlying form through the grammar
1,000,000 times, using the value for noise that was in effect at the relevant stage of learning.
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(39) The stages of learning llokano
Surface Target Initial After After After After After After

form language state 1000 7000 7000 14,000 21,000 121,000
data data data data data data
(noise 10)(noise 10) (noise 2) (noise 2) (noise 2) (noise 2)
taw.?en 50% 2.7% 38.0% 53.8% 76.0% 50.0% 52.2% 48.9%
ta?.wen 50% 2.7% 38.2% 42.9% 24.0% 50.0% 47.8% 51.1%
ta.wen 0 3.2% 5.4% 0.5% 0 0 0 0
ta.?en 0 29.4% 1.3% 0.0002% 0 0 0 0
ta.?0.en 0 29.4% 0.8% 0.0001% 0 0 0 0
ta.?o.7en 0 29.4% 12.4% 2.7% 0 0 0 0
ta.?wen 0 3.2% 3.8% 0.2% 0 0 0 0

bu:.bwa.ja 33.3% 6.7% 29.9% 13.6% 0.02% 26.6% 36.7% 32.9%
bwaj.bwa.ja 33.3% 47.1% 28.0% 77.6% 99.98% 44.8% 31.2% 33.7%

bub.wa.ja 33.3% 20.8% 41.3% 8.7% 0 28.6% 32.1% 33.4%
bwaibwa.ja 0 16.3% 0.7% 0.004% 0 0 0 0
ba:.bwa.ja 0 9.1% 0.1% 0.005% 0 0 0 0
pa.lak 100% 53.3% 79.2% 98.8% 100% 100% 100% 100%
pa?.lak 0 23.3% 19.2% 1.2% 0 0 0 0
pa.?lak 0 23.3% 1.5% 0.0005% 0 0 0 0
lab.?aj 100% 50.0% 95.5% 99.8% 100% 100% 100% 100%
la.baj 0 50.0% 4.5% 0.2% 0 0 0 0
tra.ba.ho 100% 66.7% 80.3% 99.2% 100% 100% 100% 100%
tar.ba.ho 0 33.3% 19.7% 0.8% 0 0 0 0
?aj.wen 100% 7.5% 95.5% 99.5% 100% 100% 100% 100%
?a.jen 0 28.4% 0.001% 0 0 0 0 0
?a.jo.en 0 28.4% 0.001% 0 0 0 0 0
?a.jo.?en 0 28.4% 0.05% 0 0 0 0 0
?a.jwen 0 7.5% 4.4% 0.5% 0 0 0 0
ba.sa.?en 100% 31.0% 58.0% 96.9% 100% 100% 100% 100%
ba.sen 0 31.0% 11.7% 1.0% 0 0 0 0
ba.sa.en 0 31.0% 8.5% 0.7% 0 0 0 0
bas.aen 0 3.5% 6.0% 0.7% 0 0 0 0
bas.wen 0 3.5% 15.9% 0.7% 0 0 0 0
Mean absolute error 36.5% 8.6% 3.9% 6.3% 0.79% 0.39% 0.11%
Outliers 58.8% 16.5% 1.3% 0 0 0 0

The chart illustrates the strategy that was used to obtain quick and accurate learning for llokano:
the initial stage of high noise (see column 5) created ranking values that, after noise was reduced
to 2 (column 6), eliminated the possibility of generating illegal forms. Frequency matching at
this stage was poor, but improved after further learning (columns 7 and 8). Learning trials going
well beyond what is reported in the main text (column 9) led to further improvement in modeling
frequency.

The point of this exercise is to show that, even near the beginning of its efforts, the algorithm
generates languages that are already coming to resemble the target language. The data also show
that an early “boost period” with high noise can be helpful in excluding outliers; it remains to be
seen if evidence will ever be found that humans behave analogously.

Appendix B: Equations Relating Well-Formedness and Frequency

We seek a concrete implementation of the general idea laid out in (32).
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First, we need an equation that maps an observed judgment difference to a conjectured
fraction of light forms (the conjectured fraction of dark forms is simply one minus this value).
Let AJ be the observed judgment for dark forms minus the observed judgment for light forms.
Average values foAJ were shown in column 4 of table (33). To convert this into a conjectured
fraction of light forms, we perform a sigmoid transformation:

(40) conjectured fraction of light forms#J

1+0.2
Values obtained from this equation appear in the last column of table (33).

Second, we need an equation that maps the frequepof light forms predicted by the
Gradual Learning Algorithm (table (35), column 4) to a predicted judgment difference. For this,
we carry out the mathematical inverse of the sigmoid transformation (40), which is:

(41)

I 1 1D
o —
o | B, T H
predicted judgment differenece———
log 0.2

The values obtained from this equation appear in the last column of table (35).

Here are examples illustrating what the equations claim. If the judgment dillighsome
context is a perfect 1, and ddtk is the opposite extreme of 7, then it is hypothesized that in the
learning data that gave rise to these judgments, [ijstoutnumber dark by a factor of 15,625
to one; a ratio that would likely permit the learner to consider any[dlaas a speech error. If
light and dark/1/ are judged rather closely, say 2 vs. 3, the equations claim that in the learning
data they occurred at a conjectured ratio of five to one. Note that this arrangement attributes
some reasonable sagacity to language learners: it would be a rash learner that concluded that
there is anything seriously wrong with a form that occurs in a sixth of all cases.

Appendix C: Stylistic Variation

The research literature in sociolinguistics clearly shows that variation in language reflects
distinctions of casual vs. formal style. A full model of variation would have to reflect this, and in
this section we offer a brief speculation on how the model given here could be extended in an
appropriate way.

We assume that utterances occur in contexts that can be characterized along f@rraablal
continuum. We quantify this continuum with a variallgyle such thatStyleequals O in
maximally casual speech and 1 in maximally formal speech. The selection point for a given
constraintG is determined by equation (42):

(42) selectionPoint= rankingValue + styleSensitivity 5tyle+ noise

This is the same equation as before, augmented by thestgteSensitivityStyle in which
styleSensitivity is a constraint-specific value. Constraints with positive values for
styleSensitivityake on higher ranking values in formal speech; constraints with negative values
for styleSensitivitytake on higher ranking values in casual speech, and constraints with zero
values forstyleSensitivitare style-insensitive.
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We conjecture that the initial stages of acquisition are insensitive to style. Under this
condition, all values obtyleSensitivityare zero, and acquisition can proceed with the Gradual
Learning Algorithm as described in the main text. Later, as the language learner becomes aware
of the stylistic context of utterances, she learns to associate variation in selection points with
style. In this view, the appropriate research strategy is to develop a learning algorithm that can
learn both the ranking values and the valuestyleSensitivityor each constraint, given a set of
utterances and their affiliated values &iyle We defer discussion of such an algorithm to later
work.
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