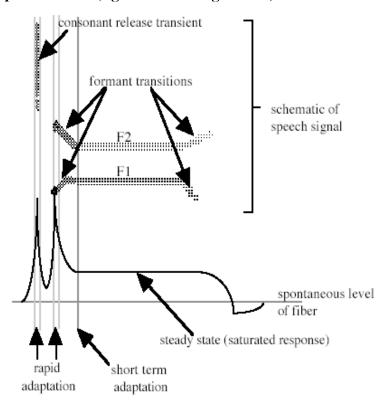

Class 14, 2/23/23: Phonetics in phonology II

1. Current assignments

- MaxEnt phonotactics homeworks I will need more time to grade them; sorry.
- Web site is *still* down: please visit instead
 - https://www.palisadessymphony.org/temp/index.htm
- Read for next time:
 - White, James (2017). Accounting for the learnability of saltation in phonological theory: A maximum entropy model with a P-map bias. *Language* 93:1-36.
 - > No summary required
- Indonesian stress homework is due in class Tues. Feb. 28.

2. Phonetics in phonology: reviewing from last time

- Possible phonetics-based biases
 - Maintain perceptual distance between phonemically-contrasting entities.
 - Maintain perceptual similarity between the allomorphs of a morpheme (P-map)
- So, what is the basis for phonetic similarity?
 - > The theory of external vs. internal cues
 - > Segments with internal cues (primarily vowels) should be abundant see below.
 - > Segments relying on external cues should be vowel adjacent, so they can be detected by means of coarticulation.


Three semi-voiced stops in the frame / a ___ a __ a, speaker BH. What are they?

3. Factoring in the asymmetries of the auditory system

• Literature review: Wright, Richard (1997) Consonant Clusters and Cue Preservation in Tsou, UCLA dissertation; also Wright (2004), cited above.

- The auditory system goes wild at sudden increases in amplitude, is indifferent to sudden decreases.
 - → CV transitions are salient, VC transitions are not
 - → a preference for consonants in prevocalic position

4. Response curves (figure from Wright 2004)

5. External cues

- Plausibly, these should be more abundant; e.g. put more vowel contrasts into the long vowels (Hindi), or the stressed vowels (English).
- See, e.g.
 - Crosswhite, Katherine. "Vowel reduction." In Hayes/Kirchner/Steriade *Phonetically based phonology* (2004): 191-231.

SOME CASE STUDIES OF PHONETIC EFFECTS IN PHONOLOGY

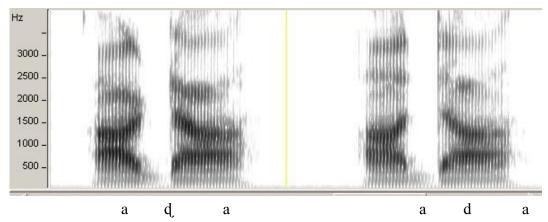
6. What is the direction of assimilation in consonant clusters?

- Pre-Steriadian wisdom:
 - Coda consonants assimilate to onset consonants.
 - Exceptions: affix consonants assimilate to stem consonants.
 - ➤ Hebrew homework shows both principles, with constraint ranking.

/it-labe \int -u/ → [itla**p** \int u] /it-zarez/ → [iz**d**arez]

7. Steriade: reference to syllables is a prioristic; let's look at the cues

- Simple cases: non-prevocalic consonants assimilate to prevocalic ones.
- This follows from two things:
 - > The principles just given concerning the salience of external cues.
 - ➤ The further principle (a key theme of this course) that alternation tends to be minimally salient perceptually.
- Let us consider a canonical case, found all over the world: $\langle an+pa \rangle \rightarrow [ampa]$
 - > Try three candidates: faithful, [ampa], [anta]


8. Steriade's *Paradebeispiel*: retroflex/alveolar contrasts

- Retroflexes are common in the languages of Australia and India
- There is enough information to obtain typological preferences.
- Strikingly, they tend to be backward:
 - In retroflex-alveolar or alveolar-retroflex sequences, we normally get *progressive* assimilation ($\langle atta \rangle \rightarrow [atta]$, $\langle atta \rangle \rightarrow [atta]$).
 - ➤ Why should these be different?

9. The phonetics of retroflex articulation

- There is forward tongue movement during retroflexes:
 - > at release, they are almost alveolars
 - cues are mostly in preceding vowel [ada] [ada]
 - > characteristic preferred position of retroflexes is **postvocalic**, even in codas
 - > Thus: neutralization (usually to alveolar) in initial and postconsonantal position
 - > progressive assimilation of retroflexion in consonant clusters, rather than the normal regressive assimilation
- This shows up on a spectrogram, and indeed is (I think) plainly audible, at least for retroflexes as I articulate them:
 - > [ad] [ad], [da], [da]
 - > see spectrogram

¹ German, 'parade example'. A favorite word of Indo-Europeanists.

10. Consequence

- In coronal sequences with retroflexes, phonetic salience of alternation is minimized by progressive assimilation.
- Again, try an informal tableau with /atta/: faithful, regressive, progressive

11. Steriade's theoretical proposal: the P-map

- Children accumulate phonetic experience in perceptual and articulatory maps (Steriade readings).
 - ➤ Here is a sample P-map from Steriade:

	V_V	V_#	V_C	#_V	C_V	C_C
s/ş	s/ş	s/ş	s/ş	$_{\mathbf{S}}/_{\mathbf{S}}$	s/ş	s/ş
t/t	t/t	t/t	t/t	t/t	t/t	t/t
n/n	n/n	n/η	n/η	n/ŋ	n/n	n/n

- They use this as a learning bias; favoring phonetically sensible constraints.
- For Steriade this is a set of universal a prior rankings on a set of highly-detailed Faithfulness constraints.
- Colin Wilson (2006, *Cognitive Science*) built on this, developing a "soft UG" version with µ's for the weights of each Faithfulness constraint, derived from the P-map.

12. Further: Jun (2004)

- Other factors affecting perceptibility of place also affect assimilation.
- Nasals obscure the formants of neighboring vowels; are weakly cued for place, assimilate more easily.
 - ➤ Jun, Jongho. "Place assimilation." In Hayes/Kirchner/Steriade *Phonetically based phonology* (2004): 58-86.

• Assimilation of place in nasals implies assimilation of place in stops, etc.

13. Let us do a couple of tableaux for place assimilation.

Try:
$$np \rightarrow mp$$
, not *nt $tt \rightarrow tt$, not *tt

Set up the constraints with *Articulation, *Map constraints.

Relate what you find to the P-map.

For *Articulation, we might appeal to the "radical autosegmentalism", often expressed as "feature geometry", of the 1980s and 1990s.

14. Similar patterns in hiatus resolution

• Remember Ilokano: /i/ is happy to become [j], /e/ is willing to become [j], /a/ is unwilling to become [j].

15. The "Too many solutions" problem

- Reference: Steriade readings
- This has long been noticed as a peril of OT.
- Language characteristically fix
 - b) by devoicing it
 - > np by assimilating the n
 - > VV by gliding, inserting [?]
- BUT: use your imagination, how else might these problems be fixed? Of course, all these solutions are included in GEN.
- Steriade suggests that languages favoring the perceptually least salient repair, per P-map, and (for us) preferred weightings of *Map constraints.

16. In favor of a "soft" answer to the Too Many Solutions problem

- I'm personally happy with this, since of course typology does give us cases where multiple solutions occur cross-linguistically.
 - ➤ See Zuraw, Kie and Yu-An Lu (2009). Diverse repairs for multiple labial consonants. *Natural Language and Linguistic Theory* 27. Pp. 197-224.
- This relates to the question of unnatural phonology, dished up by accidents of history.

17. Some non-P-map compliant phonology of diachronic origin

- A compendium of cases involving epenthesis: Bert Vaux (2002) Consonant epenthesis and the problem of unnatural phonology (2002). Never published but available on line.
- The most famous case is non-rhotic English, which diachronically restructured to give epenthesis of (for heaven's sake) [1].
- History:

law	lore	the law is	the lore is	
lə	ıcl	ðə lə ız	ge loi IS	ancient (preserved in non-rhotic dialects)
	lo			loss of nonprevocalic /r/
		ðə ləı ız		restructuring as epenthesis

- Comparable restructurings have led to a surprising zoo of epenthetic consonants. Here is Vaux's list:
 - t Axininca, Korean, French, Maru, (Danish?)
 - d French aphasic
 - n Korean, Greek, Sanskrit, Dutch, Swiss German, (Armenian, Mongolian, English)
 - η Buginese (Trigo-Ferre 1988, Lombardi 1997:14)
 - r English, German, Uyghur, Zaraitzu Basque (Hualde and Gaminde 1998:42), (Japanese)
 - 1 Bristol, Midlands American, Motu, Polish
 - y Turkish, Uyghur, Greenlandic, various Indic (Masica 190), Arabic (Heath 1987:48)
 - w Guajiro, Greenlandic, Arabic (Heath 1987:48), Abajero Guajiro
 - v Marathi (Masica 190)
 - b Basque (Markina, Urdiain, Etxarri, Lizarraga; Hualde and Gaminde 1998:42)
 - Basque (Lekeito/Deba, Zumaia; Hualde and Gaminde 1998:42)
 - 3 Cretan and Mani Greek (Newton 1972:56), Basque dialects (Hualde and Gaminde 1998:42)
 - g Mongolian, Buryat
 - s/z French, Land Dayak, Dominican Spanish
 - x Land Dayak

The [l] case in Midlands English is like *The crow is* [ko-l-ɪŋ], homophonous with *calling*.

18. More non-p-map compliant phonology

- Phonologists are struck by the fact that Korean repairs final /tʃ/ as [t] in paradigmatic alternation, but as [tʃi] in loanwords ("lunchie").
- Plausibly (can't prove it): the paradigm case is telescoped history; loanword adaptation is fresh and P-map compliant.

WHITE ON SALTATION

19. References

- White, J. (2017). Accounting for the learnability of saltation in phonological theory: A maximum entropy model with a P-map bias. *Language*, 93(1), 1–36.
- Hayes, B. & White, J. (2015). Saltation and the P-map. *Phonology*, 32(2), 1–36.
- White, J. & Sundara, M. (2014). Biased generalization of newly learned phonological alternations by 12-month-old infants. *Cognition*, 133(1), 85–90.
- White, J. (2014). Evidence for a learning bias against saltatory phonological alternations. *Cognition*, 130(1), 96–115.

20. Ur-reference, inventing the method

• Wilson, Colin. "Learning phonology with substantive bias: An experimental and computational study of velar palatalization." Cognitive science 30, no. 5 (2006): 945-982.

21. Basic scheme

- This is an Artificial Grammar Learning experiment, modeled on Campadanian is the saltatory pattern hard to learn?
- Stimuli (singular-plural of pictures)

p b

f v

A. ap avi

B. ab abi

22. Key results

- Participants tend to generalize [ap] ~ [av-i] to [ab] ~ [av-i], when not exposed to [ab].
- They do this to some extent even when trained explicitly on [ab] ~ [ab-i].
- A followup on 12-month-old infants yielded similar results.

23. You can train a MaxEnt grammar to be a White-participant

- (11) Calculating predicted probabilities in tableaux
 - a. Input /VpV/ in experiment 1, potentially saltatory condition

/VpV/	*V[-voice]V 2.20	*Map(p, v) 2.17	*V[-cont]V 1.86	*Map(b, v) 1.30		e (-penalty)	Predicted prob.
VvV		1			2.17	.1142	.87
VpV	1		1		4.06	.0172	.13

b. Input /VbV/ in experiment 1, potentially saltatory condition

/VbV/	*V[-voice]V 2.20	*Map(p, v) 2.17	*V[-cont]V 1.86			e (-penalty)	Predicted prob.
VvV				1	1.30	.2725	.64
VbV			1		1.86	.1557	.36

24. Levels of modeling

- Flat-out data matching
- Learning influenced by a UG prior, grounded in phonetics.

25. The effort made at biased modeling

- Obtain a P-map: take a confusion matrix, and set up an artificial MaxEnt grammar: "If I hear [x], what is probability that I perceive [y]?"
- Here is one confusion matrix that White employed, from Cutler et al. (2004, JASA):

TABLE V. Confusion matrix for initial consonants at 0 dB SNR categorized by the Dutch listeners. Percentages of correct responses have been pooled over participants and vowel contexts.

											Resp	onse										
Stimulus	pie p	tie t	car k	far f	thin 0	see s	she ∫	chin tʃ	hi h	be b	do d	go g	very v	there ð	zoo z	joke dz	yell j	my m	no n	lie 1	row r	win w
р	30.8	3.3	9.2	9.6	2.9			0.4	19.2	11.7	1.3	1.3	2.9	1.7	0.4		0.8	0.8	1.3	1.3		1.3
t	24.6	14.2	12.5	7.5	7.9	8.0		2.9	11.3	7.1	0.4	2.1	1.3	1.7				2.1	3.3	0.4		
k	25.0	7.9	25.8	3.8	4.2	0.4	8.0	0.4	13.8	4.2	1.3	3.8	1.3	0.8	0.4	0.4	1.3	0.4	1.7	1.3	0.4	0.8
f	24.6	2.1	9.2	15.0	7.1		0.4	0.4	9.2	15.0	1.7	2.9	5.4	4.2		0.4	0.4	0.4	0.4		0.4	0.8
θ	18.8	6.3	3.8	13.3	12.1	0.4	0.4	0.4	7.1	14.2	2.5	1.7	2.9	7.5			0.4	1.3	2.9	2.9		0.8
S	0.4	2.5	0.4	12.5	24.6	30.4	8.0	0.4		8.0	1.3		3.3	7.9	14.6							
ſ		0.4			1.3	6.7	72.5	18.3									0.8					
t∫	3.3	4.2	1.3	2.1	2.5	1.3	4.6	70.8	1.3	1.3	0.4		0.4	0.8		5.4	0.4					
h	26.3	4.6	12.1	11.3	5.0	0.4	0.4	8.0	17.9	8.3	1.3	0.4	4.6	1.7	0.4		0.8		8.0	1.7	8.0	0.4
b	7.5	0.4	5.8	9.2	1.7	0.4		0.4	12.5	28.3	2.5	0.4	4.6	2.1			2.9	7.1	2.9	5.0	1.3	5.0
d	2.5	2.1	1.3	1.3	5.4				8.8	12.1	10.8	2.5	2.1	12.9	0.4	0.4	6.3	4.2	12.5	12.5		1.7
g	3.3	1.3	9.2	2.9	2.5		0.4	1.3	9.2	10.0	5.0	17.1	1.7	3.3		0.8	24.2	0.8	2.5	2.5	0.4	1.7
V	7.5	2.9	2.5	8.8	5.0	0.4			6.7	30.0	1.3	1.7	9.6	7.9			2.1	3.8	1.7	0.4	2.5	5.4
ð	2.5	1.3	2.5	1.7	14.6	2.1	0.4	8.0	2.1	17.1	10.0		1.3	18.8	1.3	1.7	1.3	1.3	3.3	12.1	8.0	2.9
Z		0.8	1.3	1.3	9.6	3.3	0.4	1.3		7.9	5.0		2.5	23.8	27.1	1.3	2.5	2.1	5.0	0.4	8.0	3.8
d3	4.2	0.4	2.5	0.4	2.1		8.0	18.3	2.1	2.1	6.7	2.1		7.5		40.4	5.8	0.4	1.3	2.9		
j	1.3		0.8	0.8	0.8		8.0	0.4	2.1	4.2	2.5	1.3	0.4	1.3	0.4	4.6	69.6	2.5	4.2	1.3		0.8
m	3.8	0.8	2.5	2.9	0.4				2.1	9.6	0.8		2.5					50.0	10.0	5.0	5.4	4.2
n					0.4				2.1	1.7	1.3					0.8	0.4	12.9	73.8	4.6	0.4	1.7
1	5.8	1.3	1.7	1.3	1.3			0.4	2.1	8.3	1.7	8.0	2.5	3.3			1.3	10.0	4.2	46.7	2.1	5.4
ſ	2.5	1.3	1.7	2.1				0.4	5.8	14.6	0.8	2.1	1.3	0.8				0.8	0.4	0.4	58.3	6.7
w	1.7		0.4	0.4	0.4	0.4			1.7	5.8	0.8		2.1	0.4				5.8	8.0	2.5	1.7	75.0

J. Acoust. Soc. Am., Vol. 116, No. 6, December 2004

Cutler et al.: Native and non-native phoneme confusion 3673

• The artificial MaxEnt grammar gives the default weights for *MAP() constraints.

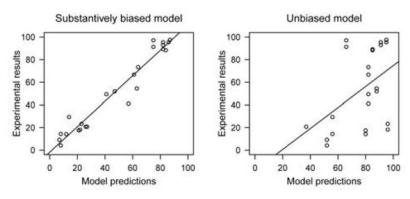
26. White's method for biased learning

- Taken from Wilson (2006), with improvements.
- Here is the MaxEnt formula from Goldwater and Johnson (2003):

$$\log PL_{\bar{w}}(\bar{y}|\bar{x}) - \sum_{i=1}^{m} \frac{(w_i - \mu_i)^2}{2\sigma_i^2}$$

- First part: log likelihood of the batch of candidates y given their UR x.
- > Second part: the prior, which implements the bias

27. Key part of the prior


• Find the difference between the weight being solved for, and its ideal values, μ.

- Square it
- Rescale it
 - You could just multiply it by something, but instead one divides by twice sigma squared. I will briefly tell you why.

28. The point of doing this

- The grammar learned emerges as a compromise between matching the learning data and matching "UR" in the form of the prior.
- Socrates:
 - \triangleright If σ is enormous, what do you match?
 - \triangleright If σ is tiny, what do you match?

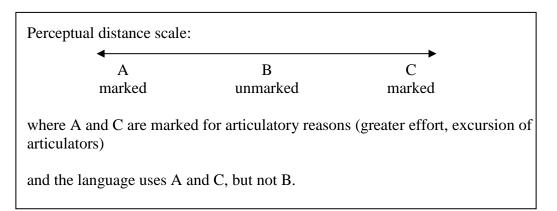
29. The method worked well for White

- It would appear that the participants actually didn't pick up much from the data themselves!
- They respond heavily influenced by the similarity prior.
- Real-life learners of Campidanian had a far better chance to overcome their prior.

DISPERSION AND CONTRAST IN PHONOLOGY

30. Some references

- Flemming, Edward (2002) Auditory representations in phonology, Routledge.
- Flemming, Edward (2004) Contrast and Perceptual Distinctiveness. In Bruce Hayes, Robert Kirchner, and Donca Steriade, eds., *Phonetically-Based Phonology*, Cambridge University Press (readings)
- Work of Jaye Padgett, UC Santa Cruz, a guide posted at https://humweb.ucsc.edu/jayepadgett/wp/research
- Work of Juliet Stanton, NYU, posted at https://julietstanton.github.io/
- Work of Paul Boersma and colleagues, noted below


31. Dispersion

- The contrasting forms of a language should sound different from each other.
- This is completely sensible a priori, given the demands of speech perception.
- It means that the "goodness" of a form depends on the other forms that are present in the language.
- This ends up falsifying the hypothesis of "harmonic completeness," as defined below.

32. Harmonic completeness

- The **harmonic completeness** property (Prince and Smolensky 1993, §9.2.1) holds when:
 - ➤ If Segment A has a subset of the markedness violations of Segment B, then any inventory that includes B must include A.
- It's very tricky to deduce harmonic completeness from OT (depends on Faithfulness constraints) can't cover it here.
- Flemming: harmonic completeness as an *empirical prediction* is very far from the truth.
 - Not due to random weird cases, perhaps with a historical origin.
 - Rather, false on a principled basis; we should *expect* it to be false.

33. Flemming's general argument: the "excluded center"²

- This is problematic for OT!
- Suppose we adopt a constraint banning B this would be very bad, because: B is what occurs when there is no contrast on the dimension.

34. Excluded center I: Russian Palatalization

• It is marked for consonants to be palatalized or velarized. But Russian has only palatalized and velarized consonants (Padgett 2001).³

² This helpful term due to Boersma and Hamanns, discussed later.

³ Padgett, Jaye (2001) "Constrast dispersion and Russian palatalization," in Hume, Elizabeth and Keith Johnson, *The role of speech perception in phonology*.

➤ And many languages like English or Spanish use non-palatalized, non-velarized consonants.

35. Excluded center II: vertical vowel systems

- Examples:
 - ➤ Marshallese
 - ➤ Kabardian and other Caucasian languages
 - ➤ Ndu languages (New Guinea)
- long vowel subsystem is normal; short vowel subsystem is "vertical":

i

Э

a

• Caveat: all such systems have substantial allophony, triggered by (secondary articulations on) neighboring consonants.

36. Vertical vowel subsystems

- In some dialects of English, the reduced vowels (medial position) are
 - i roses
 - a Rosa's

or American [əˈmɛɹɨkən]

37. Completing the picture

• [i] normally occurs in a high vowel row only where [i] and [u] are already present.

38. Excluded-center cases are ordinary — what theoretical account could predict their normality?

- Synchronic within phonological theory: Flemming and his successors.
- Diachronic via a theory of phonetic acquisition: Boersma and Hamann, others

THE ANALYSIS OF THE EXCLUDED CENTER IN BRIEF

39. Flemming's dispersion theory

• Flemming, Edward. "Contrast and perceptual distinctiveness." *Phonetically based phonology* 232 (2004): 276.

40. The functionalist basis of the constraints

- 1. It is good to minimize articulatory effort.
- 2. It is good to keep contrasting entities perceptually distinct.
- 3. It is good to have contrasts, forming the basis of distinct words.
- These principles conflict with each other

41. Analysis I: The F2 perceptual continuum

and similarly for various other continua

42. Analysis II: Constraints banning bad contrasts

MINDIST=F2:2 'Don't allow contrasting entities to differ by less than 2 on the F2 scale"

- Violated when the inventory includes both [i] and [i], or [i] and [u].
- Let's hold off for a moment on what representations MINDIST constraints apply to ...

43. Analysis III: constraint requiring enough contrasts

MAXIMIZE CONTRASTS (perhaps along some particular dimension)

• MAXIMIZE CONTRASTS constraints award **check marks**, rather than penalizing with asterisks. One ✓ for each contrasting entity.

44. Analysis IV: effort-based markedness constraint

"*HIGH EFFORT" cover term for a constraint that bans the production of peripheral vowels in short time frame. [i] and [u] are peripheral; [i] is not.

45. The factorial typology of these constraints

a. **Vertical System**: *HIGH EFFORT is on top (possibly tied with MINDIST).

	*High effort	MINDIST=F1:2	MAXIMIZE CONTRASTS
☞ [i]			✓
*[i]	*!		✓
*[u]	*!		✓
*[i-i]	*!	*	√ √
*[i-u]	*!	*	√ √
*[i-u]	*!*		√√
*[i- i -u]	*!*	**	√√√

[What candidates are harmonically bounded? Specify the bounders.]

b. Polarized system

E.g. Spanish, with the peripheral vowels [i - u].

[What is the ranking under which [i-u] wins?]

- This is claimed to be a case of the excluded center!
 - ➤ But no one had realized this before, because this ranking is so common across languages.

c. Rich system: Hopi, with [i i u]

[What is the ranking for this?]