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Abstract

In this review, I assess a variety of constraint-based formal frameworks that
can treat variable phenomena, such as well-formedness intuitions, outputs
in free variation, and lexical frequency-matching. The idea behind this as-
sessment is that data in gradient linguistics fall into natural mathematical
patterns, which I call quantitative signatures. The key signatures treated

here are the sigmoid curve, going from zero to one probability, and the
wug-shaped curve, which combines two or more sigmoids. I argue that
these signatures appear repeatedly in linguistics, and I adduce examples
from phonology, syntax, semantics, sociolinguistics, phonetics, and language
change. I suggest that the ability to generate these signatures is a trait that
can help us choose between rival frameworks.
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1. INTRODUCTION: SOME PROBABILISTIC PHENOMENA
IN LINGUISTICS

This article addresses three linguistic phenomena in which we need to characterize variability and
gradience in the analysis. First, we frequently need to model cases where alternative surface forms

are generated, at varying probabilities, from the same underlying form. This is a research focus in
sociolinguistics (Section 5.2), phonology (Sections 5.1 and 5.1.2), and syntax (Section 5.4). Sec-
ond, speakers of a language can frequency-match statistical patterns in the lexicon. For instance,
when Hungarian speakers undertake a nonce-probe task testing their intuitions about the princi-
ples of vowel sequencing, their responses statistically match the pattern of the Hungarian lexicon
(Hayes et al. 2009); while in syntax, speakers statistically track the selectional properties of verbs
and use this information in sentence perception (Jurafsky 2003, Linzen & Jaeger 2016). Third,
native speaker judgments, which include phonological well-formedness judgments (Scholes 1965,
Hayes & Wilson 2008) and grammaticality judgments in syntax (Lau et al. 2017), are characteris-

tically gradient and can be modeled probabilistically.!

To treat these cases in generative grammar, we need frameworks that can gen-
erate outputs on a probability scale. The key framework covered in this review is
Maximum Entropy Harmonic Grammar (MaxEnt) (Goldwater & Johnson 2003, Wilson 2006),
which is a probabilistic version of Optimality Theory (OT) (Prince & Smolensky 2004).
The apparatus in MaxEnt that assigns probabilities is identical to the statistical procedure of

logistic regression, and throughout the review I alternatingly use the terms MaxEnt and logis-
tic regression to refer to the same math, depending on context.

I also evaluate MaxEnt against alternative approaches to constraint-based probabilistic linguis-
tics. The strategy adopted uses simple math to locate the quantitative patterns characteristically
generated under each theory, patterns which are visually identifiable when we plot them on a
graph. I call such patterns quantitative signatures. My work follows up on earlier studies of this
kind (Jesney 2007, Hayes 2017, Zuraw & Hayes 2017, Smith & Pater 2020). I extend this re-
search by offering a way to visualize the signatures that I believe is informative, and by applying
the method to all areas of grammar.

I address two related signatures. For each, I describe the pattern, cite real-world cases,

and demonstrate mathematically which frameworks possess these signatures; this result in
turn is taken to reflect on the empirical adequacy of these frameworks. In pursuing this
inquiry I examined about 25 different cases in various fields. This brief review can-
not accommodate them all, yet rigor compels me to report them. To this end, I have
created a website, the Gallery of Wug-Shaped Curves (hereafter, the Gallery; see https://
linguistics.ucla.edu/people/hayes/GalleryOfWugShapedCurves/). For each case, the site in-
cludes an illustrative graph as well as the spreadsheet calculations that generated it. The site also
includes a longer version of the present article, covering matters omitted here for reasons of space.

2. MaxEnt

I begin with an exposition of MaxEnt. This will be more than an overview, because developing a
close intuitive understanding of MaxEnt helps with the task of assessing quantitative signatures,
hence theory-comparison.

I'The three cases just given do not exhaust the set of gradient phenomena in linguistics; T omit the research
program of modeling physical gradience in the phonetic output of the grammar, as in the work of Liberman &

Pierrehumbert (1984). Some recent examples that approach this problem using math similar to that discussed
here are the studies by Flemming & Cho (2017) and Hayes & Schuh (2019).

Hayes


https://linguistics.ucla.edu/people/hayes/GalleryOfWugShapedCurves/

Annu. Rev. Linguist. 2022.8:473-494. Downloaded from www.annualreviews.org
Access provided by University of California- Los Angeles UCLA on 01/30/23. For personal use only.

2.1. MaxEnt as a Species of Optimality Theory

In linguistics, MaxEnt is a version of Optimality Theory (OT; Prince & Smolensky 2004). In
OT, one analyzes a language system using a set of inputs, sets of candidate outputs for each in-

put, and a set of constraints used to choose from among candidates. The theory derives outputs
not with a serial derivation but by defining in advance the set of all possible outputs (GEN) and
employing a metric (EVAL) that selects the best one. The metric used for candidate selection is
this: Constraints are strictly ranked, as part of the language-specific grammar. Between any pair
of candidates for a given input, the decision is made by the highest-ranking constraint that prefers
(assigns fewer violations to) one of them. Similar decisions made across the whole candidate set
determine a unique overall winner, which is the output of the grammar.

In probabilistic versions of OT, selection of a unique winner is replaced by assignment of
probability to every member of GEN. In variable phenomena, often more than one candidate re-
ceives non-negligible probability, and these numbers serve as the predictions of the model, testable
against corpus or experimental data.

2.2. The MaxEnt Math and Its Intuitive Rationale

MaxEnt replaces the strict-winner selection system of classical OT with the mathematics of lo-
gistic regression, with constraint violations taking the role of predictors. In this section, I take
apart this math, step by step, and show that each step is intuitive and sensible. This provides a
foundation for the sections below that examine how the math behaves in language examples.

A goal of this discussion is to portray MaxEnt as a mathematicized embodiment of common
sense. The key idea is to think of MaxEnt as a decision procedure. The constraint violations are,
in essence, evidence bearing on which candidates should be assigned high or low probability. We
start by looking at the whole formula:?

(1)  The MaxEnt formula
exp(—2Z;w; fi(x))
Z
The formula calculates Pr(x), the probability of candidate « for some input. The formula in-
cludes everything needed to calculate this probability, including the set of output candidates, the
constraints, a violation count for each constraint/candidate pair—and one other item, the set of

Pr(x) = , where Z = X exp(—Z;w; fi(x;))

constraint weights, discussed below. In the sections that follow, I reconstruct the formula in stages,
starting from its smallest parts.

2.2.1. Constraint weights. In a MaxEnt grammar, the weight of a constraint is a nonnega-

tive number that, intuitively, tells you how strong it is, or more specifically, how much it lowers
the probability of candidates that violate it. In formula 1 above, this is w; for each constraint 7.
Assigning weights to constraints is intuitive, because reasons differ in cogency.

2.2.2. Multiple violations. In formula 1, we twice see the expression w;f;(x), where x is the can-
didate being evaluated, f;(x) is the number of violations that candidate incurs for the 7th constraint,
and w; is the weight of the 7th constraint. Thus, weights are multiplied by violation counts. This
is intuitive in the sense that two violations are plausibly “twice the evidence” of one.

2The formula appears in, for instance, the work of Goldwater & Johnson (2003, example 1) and the logistic
regression chapter of Jurafsky & Martin (2021).
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Figure 1

How eHarmony depends on Harmony (both are key concepts of MaxEnt grammars; see Section 2.2). The
equation plotted is eHarmony = exp(—Harmony), where exp(x) abbreviates ¢*. Abbreviation: MaxEnt,
Maximum Entropy Harmonic Grammar.

2.2.3. Harmony. Once weights and violations have been multiplied, we calculate a sum across
all constraints for each candidate. This sum acts as a penalty score for the candidate, and it is often
called Harmony (Smolensky 1986). In formula 1, Harmony is represented by Z,wf;(x), where =,
represents summation across constraints. The use of summation is intuitive because when we make
rational decisions, we find it appropriate to weigh all of the evidence. In this respect, classical OT is
bravely counterintuitive, because the choice between two candidates is made solely by the highest-
ranked constraint that distinguishes them, ignoring the testimony of all lower-ranked constraints
(Prince & Smolensky 2004, section 5.2.3.2). The view taken here is that Prince and Smolensky’s
move to discard evidence was brave, but emerges in the end as empirically wrong.

2.2.4. eHarmony. The Harmony values are next converted to what Wilson (2014) has called
eHarmony.’ This is done by negating Harmony, then taking e (about 2.72) to the result. In for-
mula 1, the term for eHarmony is exp(—%; w;f; (x)), where exp(x) is an abbreviation for ¢*. The
eHarmony function is plotted in Figure 1.

The eHarmony function rescales the evidence: If Harmony is increased from an already-large

value, then eHarmony, being already close to zero, gets only slightly smaller; whereas if Harmony
is not very big in the first place then small differences in Harmony result in large differences of
eHarmony.

I suggest that this rescaling reflects intuitively sensible decision making. Suppose we are trying
to predict output probability for a candidate for which we know, as a rough guess, that the prob-
ability is going to be about 0.5. In such a case, we are quite uncertain, and additional information
to inform our choice is welcome and taken seriously. On the other hand, if a candidate is heavily
penalized by information we already have (e.g., probability of 0.001), then even a great deal of
evidence may shift probability by only a small amount—say, to 0.0005. And for most people, I
suspect, to become absolutely certain requires a vast, perhaps infinite, amount of evidence. A slo-
gan that may be useful to remember is “Certainty is evidentially expensive”: To move probability

3Wilson was joking (eHarmony is a dating website), but the mnemonic seems useful.
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around when it is already close to zero or one requires large infusions of evidence. The use of
eHarmony implements this intuition mathematically.

2.2.5. Probability. There are two more steps: (#) We sum up eHarmony for all the candidates
assigned to a given input, calling this sum Z. In formula 1, Z is expressed as X; exp(—X; w;f; (v))),
where j is the index intended to denote candidates. () We calculate the probability of a candidate
by dividing its eHarmony by Z; that is, we calculate its share in Z. This division appears in the
complete formula for Pr(x) in formula 1. The addition-then-division procedure is intuitive, since
it says that a candidate is less likely if it has strong rivals. Further, we see now that the probability
of any candidate is proportional to its eHarmony; hence the discussion in the preceding section,
showing how exponentiation makes certainty evidentially expensive, carries through to the final
probability relations.
Summing up, the MaxEnt computation is claimed here to be intuitive at every stage:

MaxEnt and common sense
(2a)  Constraints differ in their evidential force.
(2b)  Multiple violations of the same constraint make a candidate less probable.
(2c¢)  All evidence is considered, none thrown out.
(2d)  Evidence has a smaller effect as we approach certainty.

(2e)  Candidates are less probable when they compete with powerful rivals.

To the extent that these five properties reflect sensible principles for arriving at conclusions from
evidence, MaxEnt (or any framework that has these properties) can be said to have an a priori

claim on our attention.*

3. FIRST QUANTITATIVE SIGNATURE: THE SIGMOID CURVE

With this background we can turn to the main topic: quantitative signatures, their derivation
under different theories, and their distribution in the real world. I focus on simple cases in which
for each input, there are just two viable output candidates. In OT, including MaxEnt, this means
that all other conceivable candidates are ruled out by powerful constraints. This is normal in OT,
and I do not bother with formulating the necessary constraints below.

The two viable candidates compete on the basis of less-powerful constraints. Suppose that one
of these constraints may be violated either once or not at all; call it ONO¥F. Let the other be a
constraint, or a set of constraints, defining a scale. Scales are familiar in constraint-based linguistics
(Prince & Smolensky 2004, section 5.1; de Lacy 2004), and linguists have developed analyses in
which the scale is formalized either with a single, multiply violable constraint or with families of
related constraints.

Let us deal first with the simplest case, where the scale involves multiple violations of a single
constraint. We call this constraint VAriaBLE and assign it violation levels ranging (for concrete-
ness) from one to seven. In the candidate competition, one of the two viable candidates for each

*Obviously, there is much more to say about MaxEnt/logistic regression from the technical point of view. For
logistic regression as a statistical inference technique, with applicable methods of significance testing, see the
textbooks by Baayen (2008) and Johnson (2011). On logistic regression in computer science, with the standard
method of calculating the best weights to fit the data (and the proof of its convergence), see Jurafsky & Martin
(2021). For MaxEnt specifically applied as a method of analysis in generative grammar, see Goldwater &
Johnson (2003), Jiger (2007), and Hayes & Wilson (2008).
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Figure 2

A sigmoid curve generated in the Maximum Entropy Harmonic Grammar (MaxEnt) framework. On the
horizontal axis is plotted the number of violations (not necessarily integers) for the constraint VARIABLE,
assuming a continuous series of candidates. On the vertical axis is plotted the predicted probability of a
candidate that incurs x violations of VariasLE. All candidates are assumed to incur one violation of an
opposing constraint, ONOFF. The weights of VariaLE and ONOFF are 2 and 8, respectively. For full
discussion, see Sections 2 and 3.

input obeys VariasLE and violates ONOF¥F, while the other obeys ONOFF and violates VARIABLE
some specified number of times, depending on the input. Adopting this setup, we calculate the
output probabilities using formula 1, and plot a function: The horizontal axis gives the number of
violations of VARIABLE across inputs, and the vertical axis gives the probability that the candidate
violating VAriaBLE wins. For clarity, I plot this function for all values on the horizontal axis, not
just the discrete points that would occur for particular input forms. The curve that MaxEnt derives
under these conditions is a sigmoid (S-shaped) function, illustrated in Figure 2.

Here are crucial properties of the MaxEnt sigmoid, often called the logistic function. (2) It is
symmetrical, and the symmetry point falls where probability crosses 50%. (b) It asymptotes on
either end at one and zero. (¢) It is steepest at the symmetry point and becomes more level as
one proceeds in the positive or negative direction. (4) The uphill/downhill orientation depends
on whether the constraint weight of VARIABLE is positive or negative, and its steepness is greater
when the weight of VariasLE is larger. (¢) The relative right/left position of the curve is determined
by the weight of ONOFr.’ These properties must be kept in mind when we later assess whether
an empirically observed curve is properly to be considered as a sigmoid. Markedly asymmetrical
curves, curves that asymptote at a value other than one or zero, or curves that at some point reverse
their slope would not qualify. On the other hand, the language under study might not provide a
full range of values for how many times VARIABLE is violated, so in the empirical domain we often
find truncated sigmoids.

3.1. Illustration: A Sigmoid from a Phonetic Experiment

Itis helpful to start with a case in which the horizontal axis of the sigmoid is uncontroversial, being
a physical quantity rather than an analytic construct. Such cases arise frequently in phonetics, in

SFor discussion of these and other properties, see McPherson & Hayes (2016).
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Figure 3

A Maximum Entropy Harmonic Grammar (MaxEnt) sigmoid curve fitted to the observations of Kluender
et al. (1988). The vertical axis gives the probability that an experimental participant will perceive a voiced
stop. The upper horizontal axis gives the milliseconds of closure duration for the experimental stimuli. The
lower horizontal axis gives the analytic expression of this value as Harmony, under the MaxEnt analysis. The
constraint weights employed were 0.088 for VariaBLE and 4.34 for ONOFF.

the context of speech perception experiments. Suppose, for instance, that we plot on the horizontal
axis a phonetic parameter like stop closure duration, varied in synthesized experimental stimuli.
On the vertical axis we plot the probability that an experimental participant will experience a
certain percept, such as [b] as opposed to [p]. Kluender et al. (1988) report such an experiment,
and their data indeed emerged as an approximate sigmoid. A subset of the data is replotted in
Figure 3, in which the narrow line behind the data points represents the predictions of a MaxEnt
model fitted to the data.

I assume the reader’s agreement that the sigmoid curve superimposed on the data in
Figure 3 is a decent fit and that small deviations may be attributed to sample or measurement
error; the same holds for the remaining graphs in this article. I turn, then, to the reanalysis of the
data in MaxEnt terms.

For present purposes it is useful to adopt a stance proposed by Boersma (1998): that speech
perception be regarded as a form of grammar. Boersma sets up a constraint-based, probabilistic
theory in which the grammar inputs the acoustic signal and outputs a probability distribution for
the set of possible phonemes (or words, etc.) inferred from the signal. The particular framework
he uses to do this (not MaxEnt) is discussed below in Section 6.2.1.

Pursing Boersma’s imperative in MaxEnt terms, we can arrange our grammar as a simple
target-and-penalty system. The grammar inputs closure duration values and selects between the
percepts [b] and [p]. As before, we exclude all other percepts by fiat; in a full grammar, they would
violate highly weighted constraints, resulting in essentially zero probability. Let the constraint
VariasLE penalize the percept of [b] to the extent that closure duration deviates from the extreme
value of 20 ms (which we adopt as the idealized target for [b]). VARIABLE assesses a penalty for
every millisecond by which a [b] candidate exceeds this target. We also include a baseline ONOFF

50f course, as we move from exploration (the goal here) to demonstration (the long-term goal), it becomes
essential to assess model fit quantitatively. For standard techniques, see Johnson (2011) and Baayen (2008).
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The wug-shaped curve: two sigmoids outlining the body of a wug (after Berko 1958).

constraint, which simply penalizes all [p] candidates. VariaBLe and ONOFrr conflict, and the
computed [b]-probability, will depend on the state of this conflict for a particular number of
milliseconds of closure duration in the stimulus.

Using a spreadsheet, it is easy to find the weights that produce the most accurate model for the
data from Kluender et al. (1988).” These turn out to be 0.088 for VariasLe and 4.34 for ONOFE.
From these, we can then use the MaxEnt formula (formula 1) to calculate the probability of the
voiceless candidate for all values; these are plotted as the narrow line in Figure 3.

The units of the lower horizontal axis in Figure 3 (labeled Baseline Harmony) require com-
ment. By simple math, applied to the MaxEnt formula, it turns out that in a system with just two
viable candidates, we can recapitulate all the information needed to calculate their probability
with a single number, the difference of Harmony between the two rival candidates. (For how this

works, see the long version of this article in the Gallery.) The use of differences is helpful because
we can encapsulate the relevant analytical information as a single value on the horizontal axis.

Summing up so far: MaxEnt applied to the simple VariaBLE + ONOFF constraint system yields a
sigmoid as its quantitative signature, and this signature emerges empirically in a speech perception
experiment. I return to this experiment, and similar ones, below.

4. SECOND QUANTTITATIVE SIGNATURE: THE WUG-SHAPED CURVE

Assume as before an ONOFF constraint and a VARIABLE constraint, but this time let us double the
input set, adding a new batch of inputs identical to the first except that they violate a constraint
we will call the PErTURBER: a constraint defined on an independent dimension.

Let us first establish the MaxEnt predictions. The subpopulation of candidates that violate the
PerTurBer will have their Harmony values increased or decreased, depending on whether the
PerTURBER is “allied” with ONOF¥F or with VariaBLE. Other than that, these candidates will be-
have just like their counterparts that do not violate the PErTurser. Hence, if in a graph similar to
Figure 2, we plot the two populations of candidates separately, we will get a second sigmoid,
shifted over from the first by an amount corresponding to the weight of the PerTurBER (see
Figure 4).

"In brief, one locates the constraint weights that maximize the product of the predicted probabilities of all
data points; that is, one maximizes likelihood (Goldwater & Johnson 2003, example 2). In Microsoft Excel,
the Solver utility does well for this purpose on modest-size data sets. For the particular calculations done
throughout this review, see the spreadsheets posted in the Gallery.
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As Dustin Bowers suggested to me (personal communication), it is not hard to imagine in this
double-sigmoid shape the perky creature who in recent years has been adopted as the emblematic
animal of linguistics; hence we can call it the wug-shaped curve, honoring its inventor, Berko
(1958). I have artistically embellished Figure 4 to emphasize the resemblance. The weight of the
Perturber can be read off the graph: It is the horizontal distance between sigmoids; high and low
Perturber values are thus represented graphically as fat and skinny wugs.

In some cases there will be more than one Perturber constraint. When this happens, we will
obtain multiple parallel sigmoids, spaced as the weights dictate. It is tempting to think of this as a
“stripy” wug, but I use the term wug-shaped curve for these cases as well.

5. PROSPECTING THE LINGUISTICS LITERATURE
FOR WUG-SHAPED CURVES

My involvement with wug-shaped curves arose from participation as second author on a paper by
Zuraw & Hayes (2017) that adduces three wug-shaped curves in phonology and from them makes
arguments about frameworks, some of them repeated below in Section 6. Subsequently, Annual
Review of Linguistics Co-Editor Mark Liberman helpfully suggested that I generalize these find-
ings by addressing other fields of linguistics. Thus I embarked on a sort of intellectual hiking trip,
browsing through classic works of probabilistic linguistics and replotting their data as arrange-
ments of Baseline and Perturbers. To preview the outcome: This process repeatedly uncovered
wug-shaped curves. Below, I give examples from several fields.

My criteria for choosing cases were as follows. First, the probability of candidates must ap-
proach one at one end, or zero at the other, or ideally both. Otherwise we only see vaguely par-
allel lines that are uninformative. Second, examples must be abundant enough so that each data
point represents multiple observations, preventing random fluctuations from obscuring the pat-
tern. Further, when setting up the analysis with Baseline and Perturber constraints, I favored a
Baseline set that would yield a broad probability range. I also favored arrangements that gave the
set of Perturber constraints (where possible, both sets) a unified, intuitively distinct rationale.

5.1. Phonology

5.1.1. Tagalog Nasal Substitution. Zuraw (2000,2010), working on Tagalog, was the first pho-
nologist to observe wug-shaped patterns and treat them in a probabilistic framework. In Tagalog,
the sound [g], when prefix-final, often merges with a following consonant, creating an output that
blends the place of the consonant with the nasality of the [g]; thus /p+p/ — [m], /g+t/ — [n], etc.
The process is lexically optional, applying on a word-by-word basis, and the wug-shaped pattern
of application rates emerged when Zuraw calculated these rates from a language-wide corpus,
supported by a nonce-probe study.

In the presentation of these findings by Zuraw & Hayes (2017), a family of Baseline constraints
forbids NC clusters with various features (place, voicing). This family, all of whose members re-
ceive different weights in the best-fit analysis, distinguishes six categories: {p, t/s, k, b, d, g}. These
categories can be identified by the labels just above the graph in Figure 5. Further, each [g]-final
prefix of Tagalog has its own propensity to induce mutation; these differences are formalized with
a family of prefix-specific Perturber constraints. The lower horizontal axis in Figure 5 plots the
baseline Harmony resulting from the consonant-specific constraints, and the Perturbers are rep-
resented by giving each its own sigmoid. Point sizes reflect the number of cases from which the
probability is calculated. The plot is essentially the same as in the study by Zuraw & Hayes (2017)
except that the lower horizontal axis is scaled to reflect baseline Harmony. The visual fit of the
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Figure 5

The wug-shaped curve in Tagalog Nasal Substitution, based on the work of Zuraw & Hayes (2017). The
vertical axis depicts the probability that Nasal Substitution will apply; this is determined by the stem-initial
consonant and the choice of prefix. The upper horizontal axis depicts the different stem-initial consonants,
and the lower horizontal axis depicts the Harmony contribution of each consonant under the MaxEnt
analysis. The six sigmoid curves correspond to six choices of prefix, each with an associated Perturber
constraint. Size of data points reflects how well attested each type is in the original data. Abbreviations:
MaxEnt, Maximum Entropy Harmonic Grammar; RED, reduplicated sequence.

wug-shaped curve to the data strikes me as reasonably good (for quantitative testing of model fit,
see Zuraw & Hayes 2017, section 2.7).

An important aspect of the wug-shaped curve is that the magnitude of the effect of a Perturber
depends on where we are located on the baseline scale: It is maximal in medial position and di-
minishes gradually toward the peripheries (see the vertical spacing of the dots in Figure 5). This
pattern, pointed out by Zuraw & Hayes (2017) and Smith & Pater (2020), is (as can be calculated)
a consequence of the MaxEnt formula. From the perspective of Section 2.2, the pattern is intu-
itive: The evidence from a Perturber buys you a lot in the middle, where you are uncertain, but
will buy little at the peripheries, where you are already close to certain.

The remaining two cases discussed by Zuraw & Hayes (2017), French Liaison and Hungarian
vowel harmony, when replotted using the format described here, again yield wug-shaped curves;
these plots and the calculations supporting them may be viewed in the online Gallery.

5.1.2. Other work in phonology. In the Gallery, I give my replottings (with Baseline and Per-
turbers) of the following studies: Anttila’s (1997) pioneering demonstration of constraint-based
modeling of variable outputs, with data from Finnish genitive plurals; Ernestus & Baayen’s (2003)
modeling (including MaxEnt) of the ability of Dutch speakers to project the underlying forms of
finally devoiced consonants on the basis of the phonological properties of stems; Ryan’s (2019)
study of stress placement in Hupa; and Smith & Pater’s (2020) study of vowel-zero alternations in
French. All four cases yielded patterns reasonably interpreted as wug-shaped curves. Wug-shaped
curves are also clearly found, and labeled as such, in Kawahara’s (2020, 2022) studies of sound
symbolism in the names of Pokémon characters.

5.2. Sociolinguistics

The essential theoretical concepts discussed above—MaxEnt analysis, Perturbers, and wug-shaped
curves—all appear in research done by sociolinguists in the years around 1970. Labov’s (1969)
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Figure 6

The wug-shaped curve in Québec French [l]-deletion, based on data from G. Sankoff (1972). The vertical
axis depicts the probability that [I] will be deleted, which is determined by the identity of the morpheme
containing [I] and the gender and social class of the speaker. The upper horizontal axis depicts morphemes
containing [I], and the lower horizontal axis depicts the Harmony contribution of this consonant under the
Maximum Entropy Harmonic Grammar (MaxEnt) analysis. The four sigmoid curves correspond to four
possibilities for the speaker’ identity based on gender and social class.

study of Black English copula deletion established the systematicity of linguistic variation; it also
demonstrated the existence of Perturbers and their ability to affect output probabilities across the
Baseline range. MaxEnt was later introduced (under the label of logistic regression) by D. Sankoff
and other researchers (Cedergren & Sankoff 1974, Rousseau & Sankoff 1978, Sankoff & Labov
1979). In this and later sociolinguistic work, the MaxEnt system was treated as a kind of triggering
mechanism: Each phonological rule has its own attached MaxEnt grammar telling it whether or
not to apply®

The illustration in Figure 6 reanalyzes the data from which Bailey (1973) first deduced the
presence of a wug-shaped curve. The data were taken by Bailey from G. Sankoff (1972) and in-
volved optional deletion of [1] in function words in Québec French. In my MaxEnt reconstruction,
the Baseline constraints are (#) a general Markedness constraint disfavoring the realization of [I],
and (b) lexically specific Max constraints militating against [I]-loss in particular function words.”
The Perturbers are—in superficial terms—further Max constraints based on the sex and socioeco-
nomic status (professional/working class) of the speaker. I doubt that such factors actually appear
in the grammars of individual speakers; it seems more reasonable to suppose that speakers set
the weight of Max(l) differently in various social contexts, in ways that respond to sex and social
class.!? Thus in the present case, sex and social class are treated as proxies for the varying weight
of Max(l). The wug-shaped curve I obtained is in Figure 6.

8For general background on quantitative modeling of variable phonology in sociolinguistics since the 1970s,
see Section 6.3 below, as well as Chambers & Schilling (2013) and Mendoza-Denton et al. (2003).

9Max, penalizing deletion, is a key constraint family in the standard theory of phonological Markedness con-
straints (McCarthy & Prince 1995). The tendency of function words to have morpheme-specific behavior has
long been known (see Kaisse 1985).

10T he response of phonology to social context is a vast research area, and the essays in part ITT of Chambers
& Schilling (2013) offer a useful guide. For an applicable MaxEnt proposal, see Coetzee & Kawahara (2013).
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Voicing percept by closure duration under two conditions, after Kluender et al. (1988). This is an elaborated
version of Figure 3 that includes an additional data series giving the probability of a voiced percept when the
preceding vowel is short (in Figure 3, only the post-long data series was shown). The two sigmoids together
form a wug-shaped curve.

I also recalculated and plotted wug-shaped curves for several other classic studies, including
those just mentioned: Labov (1969) (covering both contraction and deletion), Wolfram & Fasold
(1974) on Cluster Simplification in Detroit Black English, and three studies from Cedergren &
Sankoff (1974): que-dropping in Québec French, [r] spirantization in Panamanian Spanish, and
(with Labov’s data) [r]-dropping in New York City English. All of these may be found in the
Gallery.

5.3. Phonetics

We return to the sigmoid from Kluender et al. (1988), discussed in Section 3.1. For simplicity,
Figure 3 plotted only one of the two data series from that paper. The authors’ actual research
interest was in a Perturber, the length of the vowel preceding the [b]/[p]. Their hypothesis was
that, since vowels are normally longer before voiced stops, the presence of a longer vowel would
bias perception in favor of [b]. That this hypothesis panned out is shown by Figure 7.

The MaxEnt grammar I set up for Figure 7 is like the one for Figure 3 except that it includes
a Perturber, *Voicep PercepT ArTER SHORT VoweL; this penalizes the [b] candidate when in this
context. When I fitted the full Kluender data, including both long and short vowels before [b] and
[p], this constraint received a weight of 0.84, and the result was a clear if skinny wug.

Plots like Figure 7 frequently appear in the work of phoneticians and psycholinguists, who
use MaxEnt (under the logistic regression rubric) to quantify the influence of the Perturber.!!
Following the MaxEnt math, it is straightforward to rescale Perturber Harmony as actual mil-
liseconds. In the present case it emerges that the millisecond value for *Voicep PErcepT AFTER
SuorT VoweL is about 9.5 ms, in rough agreement with what Kluender et al. (1988) found using
a different method.

11Some classic papers employing this method include those by Ganong (1980) and Massaro & Cohen (1983);
for helpful overviews, see McMurray et al. (2003) and Morrison (2007).
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5.4. Syntax

A number of studies in syntax have engaged with gradience of the types described in Section 1,
using MaxEnt or similar models (see, e.g., Velldal & Oepen 2005, Bresnan et al. 2007, Bresnan
& Hay 2008, Irvine & Dredze 2017). The particular research addressed here, by Bresnan and
colleagues, focuses on a microdomain: instances in which the same communicative intent can be
expressed with two different syntactic encodings. An example is the two ways that English offers to
express the arguments of a verb of giving: NP NP (Mary gave fobn a book) and NP PP (Mary gave
a book to Jobn). In such cases, it has proven possible to identify probabilistic factors that favor one
or the other outcome. In analyzing such cases, Bresnan et al. have used MaxEnt and similar tools.
Their studies show that choices like NP NP versus NP PP are, as it were, semipredictable, provided
one uses a MaxEnt or similar model. The refined distinctions predicted by their constraint weights
are supported empirically in that they show up as clear if modest distinctions between dialects, such
as New Zealand and American English. These distinctions are attested both in experimentation
(Bresnan & Ford 2010) and in corpus work.

Working in this tradition, Szmrecsanyi et al. (2017) uncovered dialect-specific patterns for four
varieties of English (US, UK, Canadian, New Zealand) for two syntactic choices: the dative one
just mentioned as well as the genitive choice for, e.g., the king’s palace versus the palace of the king.
In my replottings, I abstracted away from these differences and merged the data from all four
dialects.

For the datives, we can take as Baseline constraints the following: (#) those which depend on

” “communica-

Szmrecsanyi et al’s (2017) taxonomy of verb semantics, distinguishing “transfer,
tion,” and “abstract”; (b) those dependent on properties of the recipient NP, such as animacy, defi-
niteness, and pronounhood; and (¢) a constraint based on relative length (in words), which prefers
placing longer phrases second. This array of constraints produces a rich baseline with multiple val-
ues (so, for details the reader should consult the original paper and the Gallery). For Perturbers, I
selected the constraints and data series that single out three categories of the theme NP (that which
is given): indefinite full NP, definite full NP, and pronoun. The wug-shaped curve that emerged
under this replotting is shown in Figure 8.

The Gallery contains replottings of the other findings from Szmrecsanyi et al. (2017). Their
genitive data are of special interest because the numbers suffice to inspect the effect of a single
gradient constraint, which favors the “N of NP” construction when the possessor NP is long, as
measured in words. The replotting of these data demonstrates (at least in a limited range) the form
of wug-shaped curve that arises (like Figure 3) from a system in which a single constraint with
multiple violations forms the baseline.

5.5. Historical Linguistics'?

The line of research covered here originates with Kroch (1989), who inspected old texts across
time, tracking the relative frequencies of competing syntactic variants as a language gradually
changes. Employing the MaxEnt math, he made an important discovery: When plotted as Har-
mony, the rate of syntactic change is constant across the centuries. This constancy is obscured
when the change is plotted as simple probability, where it appears as a sigmoid. Kroch also invoked
Perturbers: additional constraints that interact with the change and whose weight is constant over
time. When Kroch’s cases are sorted by Perturber and plotted in the manner given here, we get a
wug-shaped curve.

12For general background on probabilistic modeling of language change, including more detailed discussion
of the material treated here, see Zuraw (2003).
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Figure 8

The wug-shaped curve in English dative constructions, after Szmrecsanyi et al. (2017). The vertical axis
depicts the probability that an event of transfer will be syntactically encoded as V NP NP (Verb, Noun
Phrase, Noun Phrase) rather than as V NP to NP. In the model, this probability is determined by properties
of both NPs. The horizontal axis depicts the Harmony contribution arising from constraints that concern
the recipient NP, and the separate sigmoid curves are based on various Perturber constraints involving the
theme NP. Size of data points reflects how well attested each type is in the original data.

A meticulous application of Kroch’s ideas is the work of Zimmermann (2017) addressing the
evolution of English hsve from an auxiliary verb to a main verb. This change is manifested in
four contexts: negation (I (haven’t/don’t have) any), inversion ((Have you/Do you have) a penny?),
ellipsis (You have a flair; you really (have/do)), and adverb placement (He (bas already/already has)
the approval of the nation). Each context is assumed to be affiliated with a Perturber constraint.
VariasLE is the diachronically shifting constraint governing whether have functions as an auxil-
iary verb or as a main verb. Tracing each phenomenon across two centuries, Zimmermann ob-
tains the wug-shaped curve in Figure 9. Figure 92 depicts the four sigmoids that were found,
with error bars and circles indicating the size of the text from which each data point derives.
Figure 96 implements a practice developed by Kroch: The four sigmoids are plotted not as ob-
served proportions, but as the Harmony differences in the MaxEnt model. These lines are straight
and parallel, illustrating clearly what is meant by the “constant-rate hypothesis.”

Following up on Kroch (1989), Blythe & Croft (2012, pp. 279-80) list dozens of language
changes involving sigmoid curves. There is also an intriguing literature addressing why language
change should typically show a constant rate (for discussion, see the long version of this article in

the Gallery).

5.6. Semantics/Pragmatics

Quantifier scope ambiguities occur in sentences like A4 student saw every professor. AnderBois et al.’s
(2012) corpus study suggests that an effective system for predicting quantifier scope is most likely
a probabilistic one: Scope responds to a blend of conflicting factors (for full discussion and a wug-

shaped curve from their data, see the long version of this article in the Gallery).

6. WHAT FORMAL MODELS CAN GENERATE WUG-SHAPED CURVES?

With the whirlwind tour of linguistics complete, we turn to the other goal of this article, frame-
work assessment. This involves critiquing models that demonstrably fail to generate wug-shaped
curves, and asking about models whose behavior is yet undiagnosed.
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Figure 9

A wug-shaped curve in syntactic change. (#) The horizontal axis depicts time, modeled here by a VariaBLE
constraint favoring the use of have as a main verb rather than as an auxiliary verb. The four sigmoids are
based on four Perturber constraints that influence the main verb/auxiliary choice in distinct syntactic
contexts. Dashed lines depict 95% confidence intervals, and size of data points reflects how well attested
each type is in the original data. () This panel demonstrates the fundamental identity of shape for these
sigmoids; they are replotted in the Harmony domain and appear as parallel lines with identical slope. Figure
adapted with permission from Zimmermann (2017, p. 107).

In inspecting the results of various frameworks applied to the same data, I have found a con-
sistent pattern: Often a defective framework gets lucky in fitting a particular batch of data. To
evaluate a framework properly, we need to examine its performance in a variety of situations.

6.1. Some Simple Alternatives to MaxEnt

MaxEnt is not the only way to map from constraint violations and weights to probability, nor is it
the simplest. The two alternatives discussed below were considered seriously in the early days of
quantitative sociolinguistics before the field shifted toward MaxEnt (Cedergren & Sankoff 1974,
Sankoff & Labov 1979).

In a Multiplication-cum-Cutoff model, every constraint violation has the effect of multiplying
candidate probability by the weight of the constraint. Constraints are allowed to bear weights
greater than one, so they can increase as well as reduce probability. Since probabilities cannot go

above one, this model prevents impossible values by imposing a ceiling of one by fiat. In Figure 10
I give a schematic quantitative signature of this approach, assuming seven Baseline probabilities
and seven Perturber probabilities. As can be seen, the prediction is that probabilities for particular
Perturbers will converge in one direction and diverge in the other, up to the point where the cutoff
prevents further divergence. I have never encountered data patterns like this and would be curious
to know if they exist.

A second quantitative signature of the Multiplication-cum-Cutoff model is obtained when it
is applied to cases where a single constraint is violated a variable number of times. What we find
is a curious shape: a sigmoid with a sharp curve on one side but a gentle curve on the other (for
a graph, see the long version of this article in the Gallery). I sense this has wrong typological
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Figure 10

Quantitative signature of the Multiplication-cum-Cutoff model. Instead of the parallel sigmoids of
Maximum Entropy Harmonic Grammar (MaxEnt), we see a set of diverging straight lines, one for each
Perturber probability. A cutoff is imposed at the maximum output probability value of one.

implications—to my knowledge, nowhere in the speech perception literature is it claimed that the
curves from identification experiments are systematically asymmetrical in this way, and the same
would hold for the literature on historical-change sigmoids.

In an Addition-cum-Cutoff model, probability is linearly related to the violations of VARIABLE,
with each Perturber adding to, or subtracting from, the base probability by a constant. To avoid
impossible probabilities, we impose cutoffs at zero and one. In this theory, the counterpart of the
MaxEntsigmoid isa “Z-shaped curve,” and the wug is diamond-shaped, with parallel diagonals and

horizontal lines at the top and bottom (for a sample graph, see the long version of this article in the
Gallery). In actual model-fitting, this shape can often do fairly well, because the noise present in
almost any data means thatitis hard to distinguish smooth curves from sharp angles. However, the
data from AnderBois et al. (2012) given above are poorly fitted under this model (for illustration,
see the full version of this article in the Gallery)."?

The models just covered can be addressed more broadly, in terms of the ways that a constraint-
based framework could express a rational inductive procedure. Section 2.2 has shown that MaxEnt
varies in how strongly evidence (here, constraint violations) bears on probability: In the middle
of the probability range, violations are influential; at either periphery, less so; and this embod-
ies the sensible principle that certainty should be evidentally expensive. Neither Multiplication-
cum-Cutoff nor Addition-cum-Cutoff does this. Multiplication-cum-Cutoff says that the value of
evidence is strongly asymmetrical with respect to the defining scale. Addition-cum-Cutoff says ev-
idence is equally informative throughout the zone between cutoffs, then suddenly becomes 100%
uninformative.

B3The quantitative signature of the Addition-cum-Cutoff model would also poorly model an important find-
ing in speech perception: Small differences in the physical signal become progressively more informative to
the hearer as one approaches the category boundary. This is a natural consequence of the MaxEnt sigmoid,
whose derivative, depicting sensitivity, is a mountain-like shape. It would not be expected under Addition-
cum-Cutoff, whose derivative is an all-or-nothing block, predicting that small differences should be uniformly
effective in the local zone but useless outside it. The curves obtained by McMurray et al. (2008), for instance,
strongly support MaxEnt under this interpretation.
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6.2. Frameworks Originating in Optimality Theory

"Two further approaches I will discuss have an ancestry in OT; both are like MaxEnt in attempting
to render OT probabilistic.

6.2.1. Stochastic Optimality Theory. In Stochastic OT (Boersma 1998), the key idea is that the
content of the grammar is itself probabilistic: Constraints come with a number (“ranking value”)
that expresses how highly ranked they are in general, but each time the grammar is deployed
(“evaluation time”), these ranking values are adjusted by a small random noise factor. The adjusted
values are then used to sort the constraints, and at this point the choice of winning candidate
follows classical OT. Repeated application of this procedure will yield a probability distribution
through sampling.

Applied in the cases discussed here, Stochastic OT exhibits two failings. First, it cannot treat
cases of variation from single VARIABLE constraints that vary in their violation count. This is be-
cause the classical-OT decision procedure is indifferent to the “margin of victory,” caring only
about relative differences. Such indifference is problematic for dealing with speech perception
(Sections 3.1 and 5.3), word-count effects in syntax (Section 5.4), and syllable counts in sound sym-
bolism (Kawahara 2020, 2022).1* Second, in Stochastic OT a Perturber can only perturb “within
its own zone”—that is, when its own ranking value is within shouting distance of the constraints
that it interacts with. But in the cases we have seen, the effect of a Perturber is across the board:
It interacts with constraints that are mutually very far apart on the ranking scale. This point is
covered in detail by Zuraw & Hayes (2017, section 2.6). Both failings are rooted in traits of the
classical OT on which Stochastic OT is based: Contrary to principles 2b and ¢ above, Stochastic
OT ignores relevant data, either by not counting violations, or by ignoring the effect of dominated
constraints.

6.2.2. Noisy Harmonic Grammar. Boersma & Pater (2016) is the primary reference for this
theory. Like MaxEnt, Noisy Harmonic Grammar is a species of Harmonic Grammar, and the
procedure for assigning probabilities to candidates starts in the same way, with the computation
of Harmony for each candidate. At this point Noisy Harmonic Grammar becomes like Stochastic
OT, in that we suppose a series of evaluation times at which the grammar gets altered by random
shifts, chosen from a Gaussian distribution. The framework comes in several varieties, which differ
in just which part of the calculation gets tweaked: We can alter constraint weights, violations,
tableau cells, or the Harmony scores of candidates. Space does not permit detailed analysis of
these varieties here, but readers may consult Anttila & Magri (2017), Hayes (2017), Anttila et al.
(2019), and Kaplan (2022). Details aside, the framework is fully capable of generating wug-shaped
curves, and as such it is a plausible competitor to MaxEnt.

6.3. Other Models

Among the probabilistic descendants of OT, MaxEnt differs in origin from Stochastic OT and
Noisy Harmonic Grammar in that it was not homegrown; it imported its math from existing
work in statistics. However, from the viewpoint of statistics itself, MaxEnt is a bit retrograde,

%A proposal made by Boersma (1998, sections 6 and 8.4) actually can derive sigmoids from variable con-
straints in Stochastic OT. The idea is to replace single gradient constraints with bundles of constraints, each
having equivalent effect but a slightly different target value. The complexity of implementing this approach
has perhaps been a factor in its still being underexplored.
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representing the avant-garde of the 1970s (Cramer 2002). In more recent decades, it has become
normal for experimental and corpus work that uses logistic regression to employ the mived-effects
version of the model (Baayen 2008, Johnson 2011), which controls for the idiosyncrasies of
individual words or participants.’’ There are other models more elaborate than MaxEnt, such
as neural network models (Goldberg 2017) and random forest models (Tagliamonte & Baayen
2012). Some of the authors whose empirical work is surveyed here have made use of these more
sophisticated statistical approaches; for instance, Zimmermann (2017) employs mixed-effects re-
gression, and Szmrecsanyi et al. (2017) employ random forests. For the evolution of sociolinguistic
modeling beyond simple logistic regression, readers are referred to Johnson (2009).

All of these developments are welcome, since there is every reason to think that more sta-
tistically sophisticated models will continue to be incorporated into linguistic theorizing, to the
benefit of linguistic theory. However, unlike MaxEnt, these approaches do not (to my knowledge)
have a simple analytic solution for when they would generate wug-shaped curves, and I would not
venture to say anything here about their behavior in this connection.

7. CONCLUSIONS
7.1. Is the Pattern Found Here Meaningful, and if So, How?

To put a brave slant on the content of this review: I raise the possibility that there exist general
quantitative principles, along the lines of MaxEnt, that establish the normal patterning of variation
in human languages, and that this is what leads to the repeated appearance of wug-shaped curves
when we plot data from the various fields of linguistics. Of course, it is unlikely that with further
scrutiny, all observed patterns of variation will line up as prettily as the ones seen here, and indeed
T'have found a few cases (all posted in the Gallery) where the presence of a wug-shaped curve is less
compelling than described here. However, there is one fact that encourages me in thinking that
a broader inquiry would confirm the basic pattern—namely, that logistic regression has proven
popular wherever it has been adopted in linguistics. This suggests that, on the whole, it has made
possible accurate modeling of variation data, which, given the math discussed above, means that if
we partition the constraints into Baseline and Perturber families, we will probably find more wug-
shaped curves. That this is a nontrivial finding emerged from Sections 6.1 and 6.2, which explored
alternative approaches: MaxEnt and similar theories generate wug-shaped curves; others don’t.

7.2. Is MaxEnt Part of the Language Faculty?

When we ponder whether some principle pervasive in language is part of the “language faculty,”
there are two senses in which this is meant. One is “an innate principle specific to human lan-
guage”; the other is “an innate cognitive capacity possessed by humans, employed in language.” I
suggest that if MaxEnt is part of the language faculty, it is probably in the latter, broader sense.
The crucial point is that MaxEnt is broadly used, under other names, elsewhere in cognitive
science. The MaxEnt sigmoid and other curves that approximate it have been common currency
in cognitive science for a very long time, often under the label “psychometric function” [Fechner
1966 (1860), Treutwein & Strasburger 1999]. Multiple sigmoids (i.e., the wug-shaped curve) are
likewise used by other cognitive scientists (e.g., applications to vision appear in Beaudot 1996 and

BIndeed, the balancing of lexical versus general preferences is a current live issue in phonological theory, and
we are seeing efforts to set this balance appropriately (Moore-Cantwell & Pater 2016), including by using
mixed-effects regression (Zymet 2018).
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Battista et al. 2011). One seminal work in modern cognitive science, Smolensky’s (1986) proposal
to use Harmony Theory in connectionism, included all of the MaxEnt math—without any intent
to apply it specifically to language. Thus, I suspect that many well-informed cognitive scientists
would regard it as odd to consider the MaxEnt math as specific to language. My own view (which
others share) is that this is nothing that should trouble us; it is entirely sensible to seek general
cognitive principles that illuminate the structure of language, and the MaxEnt principles may be
among them.
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